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We have already seen an example of a finitely repeated gans! flee multi-stage game where a static
game with multiple equilibria was repeated twice). Gergrale would like to be able to model situations
where players repeatedly interact with each other. In sitaht®ns, a player can condition his behavior
at each point in the game on the other players’ past behaWerhave already seen what this possibility
implies in extensive form games (and we have obtained quée domewhat surprising results). We now
take a look at a class of games where players repeatedly eng#te same strategic game.

When engaged in a repeated situation, players must considemly their short-term gains but also
their long-term payoffs. For example, if a Prisoner’s Ditamis played once, both players will defect.
If, however, it is repeatedly played by the same two playiesy maybe possibilities for cooperation will
emerge. The general idea of repeated games is that playgrdenable to deter another player from
exploiting his short-term advantage by threatening pumesfit that reduces his long-term payoff.

We shall consider two general classes of repeated gameagarfe@s with finitely many repetitions, and
(b) games with infinite time horizons. Before we jump intodhg we need to go over several mathematical
preliminaries involving discounting.

1 Preliminaries

LetG = (N, (4;), (gi)) be ann-player normal form game. This is the building block of a rajeel game
and is the game that is repeated. We shall Galhe stage game This can be any normal form game, like
Prisoner’s Dilemma, Battle of the Sexes, or anything elsem@ht conjure up. As before, assume ttat
is finite: that is it has a finite number of playerseach with finite action spacé;, and a corresponding
payoff functiong; : A — R, whered = AA;.

The repeated game is defined in the following way. First, wetrapecify the players’ strategy spaces
and payoff functions. The stage game is played at each testnee period = 0,1,2,...,7T and at the
end of each period, all players observe the realized actibime game idinitely repeated if T < oo and
is infinitely repeated otherwise.

Leta’ = (a}.d, ..., dl,) be the action profile that is played in periogand sau! is the action chosen
by playeri in that period), and denote the initial history bY. A history of the repeated game in time
periods > 1is denoted by:!, and is simply the sequence of realized action profiles fribpeaiods before
t:

= (ao,al,az,...,at_l), forr =1,2,...

For example, one possible fifth-period history of the repeéarisoner’s Dilemma (RPD) game/i$ =
(c,0), (¢, D), (C,C),(D,D)). Note that because periods begiry at 0, the fifth period is denoted
by h* because the four periods played are 0, 1, 2, and 3. Ht= (A)’ be the space of all possible
period¢ histories. So, for example, the set of all possible periddstories in the RPD game & ! =
{(C,C),(C,D),(D,C), (D, D)}, that is, all the possible outcomes from period 0. SimilaHg set of all
possible period-2 histories is

H?=(A)?=AxA4
={(C.C),(C,D),(D,C).(D,D)} x{(C,C),(C,D),(D,C),(D, D)}

A terminal history in the finitely repeated game is any higtoirlength 7', whereT < oo is the number of
periods the game is repeated. A terminal history in the igfiypirepeated game is any history of infinite
length. Every nonterminal history begins a subgame in theated game.

After any nonterminal history, all playeis € N simultaneously choose actions € A;. Because
every player observe®, a pure strategy for playeri in the repeated game is a sequence of functions,



s;(h") : H' — A;, that assign possible periodnistoriesi’ € H! to actionsa; € A;. That is,s; (h")
denotes an actiom; for playeri after historyh’. So, a strategy for playéris just

g:(&m%&mhw”&mﬁ)

where it may well be the case thBAt= co. For example, in the RPD game, a strategy may specify

si(h%) =C
si(h) = ¢ ifa]f.=.C,j7éi, fort =0,1,...,1 -1
D otherwise

This strategy will read: “begin by cooperating in the firstipd, then cooperate as long as the other player
has cooperated in all previous periods, defect otherw{3uis strategy is called thgrim-trigger strategy
because even one defection triggers a retaliation that flastver.)

Denote the set of strategies for playeby S; and the set of all strategy profiles iy = AS;. A
mixed (behavior) strategy; for playeri is a sequence of functions; (k) : H' — +#;, that map possible
period+ histories to mixed actions; € A; (Where; is the space of probability distributions ovey).

It is important to note that a player’s strategy cannot ddpempast values of his opponent’s randomizing
probabilities but only on the past valuesaf;. Note again that each period begins a new subgame and
because all players choose actions simultaneously, tmesbeaonly proper subgames. This fact will be
useful when testing for subgame perfection.

We now define the playergayoff functions for infinitely repeated games (for finitely repeated games,
the payoffs are usually taken to be the time average of thepgmod payoffs). Since the only terminal
histories are the infinite ones and because each periodaffaaythe payoff from the stage game, we
must describe how players evaluate infinite streams of feydfthe form(g;(a°). gi(a')....). There
are several alternative specifications in the literatutenaushall focus on the case where playgisount
future utilities using aiscount factor § € (0, 1). Playeri’s payoff for the infinite sequenc@zo,al, .. )
is given by thediscounted sum of per-period payoffs

o0
ui = gi(@®) +8gi(a") + 82gi(@®) + -+ 8'gi(@") + - =Y _8'gi(a")
t=0
For any$ € (0, 1), the constant stream of payofis, ¢, c, . . .) yields the discounted sum
ad 4
ZStc =
— 1-6

If the player’s preferences are represented by the diseduwsim of per-period payoffs, then they are also
represented by thdiscounted average of per-period payoffs

o0
up = (1-58) Y 8'gi(a").
t=0
The normalization factofl — §) serves to measure the repeated game payoffs and the stagegpoffs
in the same units. In the example with the constant strearaaiffs, the normalized sum will be which
is directly comparable to the payoff in a single period.

litis very easy to derive the formula. First, note that we aoidr outc because it's a constant. Second,det 1 + § +
82 + 83 + ... denote the sum of the infinite series. Ndw,= § + 82 + 83 + §* + ..., and therefore — §z = 1. But this now
means that = 1/(1 — §), yielding the formula. Note that we had to use the fact that(0, 1) to make this work.
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To be a little more precise, in the game denotediity), playeri’s payoff function is to maximize the
normalized sum

ui = Eg(1-8) ) 8'gi(a(h)),
t=0

where E denotes the expectation with respect to the distributioer avfinite histories generated by the
strategy profiles. For example, since; (C, C) = 2, the payoff to perpetual cooperation is given by

up = (1-258)) §(2) = (1—5)% =2.

t=0

This is why averaging makes comparisons easier: the paftifecoverall game () is directly compa-
rable to the payoff from the constituent (stage) gainleecause it is expressed in the same units.

To recapitulate the notatiom;, s;, ando; denote the payoffs, pure strategies, and mixed strategies f
playeri in the overall game, whilg;, a;, andw; denote the payoffs, pure strategies, and mixed strategies
in the stage game.

Finally, recall that each history starts a new proper suligarhis means that for any strategy protile
and historyh!, we can compute the players’ expected payoffs from periodward. We shall call these
the continuation payoffs, and re-normalize so that the continuation payoffs fronetimare measured in
time- units:

o
ui(olh') = (1-8) ) 6" gi(o(h").
T=t
With this re-normalization, the continuation payoff of ayér who will receive a payoff of 1 per period
from periods onward is 1 for any period.

2 Finitely Repeated Games

These games represent the case of a fixed time hofizarno. Repeated games allow players to condition
their actions on the way their opponents behave in previeusgs. We begin the one of the most famous
examples, the finitely repeated Prisoner’s Dilemma. Thgesg@me is shown in Fig. 1 (p. 4).

C D
C|10,10] 0,13
D| 130 | 11

Figure 1: The Stage Game: Prisoner’s Dilemma.

Leté € (0,1) be the common discount factor, ats, T') represent the repeated game, in which the
Prisoner’s Dilemma stage game is playEdoeriods. Since we want to examine how the payoffs vary
with different time horizons, we normalize them in units diger the per-period payoffs. The average
discounted payoff is

1-8 «
up = 1_§T+1 ZStgi(at)-
t=0

To see how this works, consider the payoff from both playergperating for all” periods. The discounted

sum without the normalization is

T 1— 5T+1

> 81(10) = ————(10),
1-6
t=0



while with the normalization, the average discounted susinigply 10.

Let's now find the SPE of the Finitely Repeated Prisonersmiina (FRPD) game. Since the game
has a finite time horizon, we can apply backward inductionpdriod 7', the only Nash equilibrium is
(D, D), and so both players defect. Since both players will defeperiodT, the only optimal action in
periodT — 1 is to defect as well. Thus, the game unravels from its endpaird the only subgame perfect
equilibrium is the strategy profile where each player alwdgfects. The outcome in every period of the
game is(D, D), and the payoffs in the FRPD afé, 1).

With some more work, it is possible to show that every Nashliegum of the FRPD generates the
always defect outcome. To see this,détdenote some Nash equilibrium. Both players will defect i th
last periodT for any historyh” that has positive probability under* because doing so increases their
periodI" payoff and because there are no future periods in which thghitrbe punished. Since players
will always defect in the last period along the equilibriurtip, if playeri conforms to his equilibrium
strategy in period” — 1, his opponent will defect at tim&, and therefore playerhas no incentive not to
defect inT — 1. An induction argument completes the proof.

In general, note that the subgame that begins in the lagigErjust a one-shot play of the stage game.
Therefore, any SPE of a finitely repeated game involves ptagi Nash equilibrium in the last-period
subgame. However, since each last period subgame is defiigukely by its history, there are multiple
such subgames. This means that if there are multiple Nashbeguin the stage-game, then different
Nash equilibria can be played in different last-period suhgs. We now state several important results
for finitely repeated games.

Begin by defining strategies that ignore the history of plimat is, strategies that prescribe particular
actions in period irrespective of what has happened in the game in perfipds , ¢ — 1:

DEFINITION 1. A strategy profiler is non-contingentf it specifies that in each periadhe players choose
a (possibly period-specific) action profité € A A regardless of the history .

The first result is intuitive: if a non-contingent strategpiie specifies playing Nash equilibria of the
stage game in every period, then it must be subgame perfect.

PROPOSITION1. Supposel’ < oo. If o is a non-contingent strategy profile such that:?) is a stage-
game Nash equilibrium forall = 1, ..., T, theno is SPE in the repeated game. 0

Proof.  Suppose that a non-contingent Nash equilibrium is playedany periods subgame for < T,

and consider period — 1. Since a stage-game Nash equilibrium is played in 1, no player has an
incentive to deviate to increase their payoff for this peéridgince the strategies are non-contingent, no
player can affect subsequent behavior in periods., T by deviating in period — 1, so no player has
an incentive to deviate in— 1 to increase later payoffs. In the last perifdthe strategies form a Nash
equilibrium in the subgame. Inducting orestablishes the claim. n

The second result is that if the stage game has a unique Naaibegm, then there is a unique SPE in
the repeated game (even if one considers contingent ses}eg

PROPOSITION2. Supposel’ < oo. If a* is the unique Nash equilibrium in the stage game, then the
unigue SPE in the repeated game is the non-contingent gyraw®filec* such thato* (h') = a* for all
]’lt € H. O

Proof. Inany SPE«™* must be played in periodl regardless of the history. Consider periogt 7 — 1.

No player can affect the future payoffs, which are fixedalfyirrespective of his actions, so there are no
dynamic incentives to deviate. Players must therefore besithg myopic best-responses, which means
they must be playing a stage-game Nash equilibrium. Bugsifids unique, they must play it. Induction
ont establishes the claim. -



The intuition here is that non-contingent strategies makapossible to condition future behavior on
current actions, and as a result force myopic best responsssch period (Proposition 1). Moreover,
if the future is set irrespective of one’s actions todayntiigere is no way to support any non-myopic
behavior either (Proposition 2). Only when there are migtidash equilibria of the stage game can we
obtain interesting contingent behavior in the repeatedegam

Consider the augmented Prisoner’s Dilemma game specifieiir2 (p. 6).

C X D
c|10,10] 2,8 | 0,13
X1 82 55 0,0
D| 130 ] 0,0 11

Figure 2: The Stage Game: Augmented Prisoner’s Dilemma.

The stage game has two PSNE:, X) and (D, D), which means there are many non-contingent SPE,
including the one with perpetual defection. However, thedists an SPE that can support the cooperative
outcome in all periods but the last. To see this, considefdlf@ving pre-strategy strategy profile

si(h% = C

/ C ifa"=(C,C)fort=0,1,...,t—1
si(h') = _
D otherwise
X ifat=(C,C)fort=0,1,....T —1
(07 = e
D otherwise

That is, the strategy begins by cooperating, and contimuel® tso in each period until the last provided
that mutual cooperation was the outcome in the precedinigghetf mutual cooperation persisted until
T, then the last period reward is coordination on tie X') Nash equilibrium, which both players prefer
to (D, D) (which is the punishment if cooperation has failed at anypoiNote that as soon as a single
player defects in any period < T, both players expect a reversion to the non-contingent|prafith
mutual defection for the remainder of the game.

Let us check whether is SPE. Consider periofl — 1, where players are supposed to pl&y, C), in
which their equilibrium payoff id0 + §(5). Since any deviation has the same consequence in the future,
we shall consider the most profitable myopic deviation:Dio If player 1 deviates td, he will get a
payoff of 13 4 §(1). This will not be profitable as long ds> 3/4 = §.

Assume now that > 3/4 and consideil” — 2. Sticking to the equilibrium profile yields the payoff
10 4 8(10 + 8(5)) = 10 + 108 + 582. The best possible deviation is @ in the current period, which
results inD in all subsequent periods, yielding a payd¥f+ §(1 4 §(1)) = 13 + § 4 §2. This deviation
would not be profitable i95 + 462 > 3, or if § > ¥122=9 ~ 0.2947. Sinces > § > 0.2947, this
requirement is satisfied.

We could continue the process, but we do not have to. Insteatd, that while the benefit from the
potential deviation remains the same3(in the period in which it occurs), the costs accumulate as the
number of periods with foregone cooperation increasess Migians that if defection can be deterred with
the threat to playD in one subsequent period, it can certainly be deterred wiethteat becomes more
severe. Even though the reward itself is reduced in the E#bdgh the players care sufficiently about the
future,§ > §, to deter the deviation in the penultimate period as wellusThhe augmented PD permits
very long cooperation provided the players do not discohatfuture too much. Contrast this with the
standard PD, which does not allow for cooperation in the |tienate period to be rewarded, which then
unwinds cooperation throughout the entire game.
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If you understand the logic of how cooperation is sustaimetthé finitely repeated game, then you will
have no trouble following the ideas for infinitely repeateaigps. Essentially, in order to sustain non-Nash
play in the stage game, from which a single-period deviaisoprofitable by definition, players have to
threaten to punish such deviations in the future. In SPEethiereats have to be credible, which means
that players must have incentives to carry them out whendh@rgencies require them to do so.

With finitely repeated games, any credible punishment rmystive playing a Nash equilibrium in the
last stage of the game. Since a threat must involve imposimg osts (in the form of foregone benefits,
for instance), for this to work, there must be more than onshiNggjuilibrium in the stage game. If that is
not the case, then there is only one expected payoff in thstage, and so no costs can be imposed there.
But this means that in the penultimate stage there is no wayake a credible threat to deter a deviation
because the future is “set” to the unique Nash equilibriuay jprespective of what happens in that stage.
This implies that only the Nash equilibrium can be playedimpenultimate stage as well, which unravels
the game.

With more than one Nash equilibrium in the stage game, it ssiiite to create threats as long as
they vyield different expected payoffs. The reward for stigkto the non-Nash play in the preceding
period would be playing an equilibrium with the higher pdyaind the punishment for deviating in the
preceding period would then be playing an equilibrium witbvaer payoff. The difference between these
payoffs determines the maximum credible punishment ptagan impose for deviations. The larger the
difference, the more costly defection becomes, and thereiasion-Nash play to sustain in the preceding
period (that is, the smallest discount factor that can de dieicreases). With grim trigger strategies that
use the Nash equilibrium that punishes the deviating plygmost, the costs increase with the length of
the punishment, which means that the earlier in the gameyampttefects, the larger the costs this would
entail. Since the profit from deviation is the same in eackodeearlier deviations are easier to deter than
later ones. This is why it is sufficient to establish the distdactor that is necessary to prevent a deviation
in the penultimate stage, where the expected costs aretl@vwgmsed only once).

Everything seems to hinge, then, on what happens in thatlastyeriod. Theendgame effeds very
powerful in finitely repeated games. But what if players aneauntain when the endgame will come?
Although there are several applications of finitely repgajames, the “unraveling” effect makes them
less suitable for modeling recurrent situations where tiggame is either too distant or too uncertain
to figure in the players’ strategic calculations. For thig shall turn to infinitely repeated games with
the understanding that “infinitely repeated” is not meantian that players literally expected to play
forever—after all, in the long run, we're all dead—hbut thia¢ tsituation does not involve a predictable
endgame around which players can coordinate expectations.

One issue that is unique to infinitely repeated games, ancedueme not had to deal with, is that since
they involve infinite strategies, they can also involve iiéirdeviations. So how can we check whether a
strategy is optimal if there are infinite possibilities f@awihtions across periods? Fortunately for everyone
involved, there is a very powerful result that tells us that aan we limit ourselves to checks against
strategies with finite numbers of deviations, but that wdlyemnly need to consider only strategies that
deviate only once and then return to the supposed optimgl pidfact, this result can also be applied to
finitely repeated games, which means we would not need tddmmnsome arbitrarily long sequences of
deviations when checking for SPE. This result greatly sifiegl our task, but since it is not at all intuitive,
let us spend a bit of time to see how and why it works.

3 The One-Shot Deviation Principle (OSDP)

The principle states that to check whether a strategy praffidemulti-stage game with observed actions is
subgame perfect, it suffices to check whether there are atyrigish’ where some playar can profit by



deviating only from the actions prescribed Ky#?) and conforming ta; thereafter. In other words, for
games with arbitrarily long (but finite) histories, it suécto check if some player can profit by deviating
only at a single point in the game and then continuing to playequilibrium strategy. That is, we do not
have to check deviations that involve actions at severaitpan the game. As we shall see shortly, this
principle also works for infinitely repeated games under s@onditions that will always be met by the
games we consider. You should be able to see how this singptifadters considerably.

The following theorem is (sometimes also called “The Oreg8tDeviation Principle”) is essentially
Bellman’s Principle of Optimality in dynamic programmingince this is such a nice result and because
it may not be obvious why it holds, we shall go through the firoo

THEOREM 1 (OSDPFORFINITE HORIZON GAMES). In a finite multi-stage game with observed ac-
tions, strategy profilds’, s*;) is a subgame perfect equilibrium if, and only if, it satisfiee condition
that no playeri can gain by deviating from" in a single stage and conforming i thereafter while all
other players stick to* . o

Proof.  (Necessity.) This follows immediately from the definitiohSPE. If (s*, s*) is subgame perfect
equilibrium, then no player has an incentive to deviate insubgame.

(Sufficiency.) Suppose that*, s* ;) satisfies the one-shot deviation principle but is not sutegpenfect.
This means that there is a subgame after some higterych that there is another strategy# s that
is a better response td; thans is in the subgame starting with Let 7 be the largest such that, for

someh?, s;(h') # s*(h'). (That is, it is the history that includes all deviations.) BecasSeatisfies the

OSDP,i is longer tharm: and, because the game is finiké,is finite as well. Now consider an alternate
strategys; that agrees with; at allz < 7 and followss from stagef on. Becausé; is the same asg’ in

the subgame beginning witf+1 and the same as in all subgames with < 7, the OSDP implies that it
is as good a responsedd; ass; in every subgame starting awith history i’ . If f =t+1,thens; = ST,
which contradicts the hypothesis thatimproves ons}. If { > t + 1, construct a strategy that agrees
with s; until # — 2, and argue that it is as good a response;asnd so on. The sequence of improving
deviations unravels from its endpoint. n

The proof works as follows. You start from the last deviatiom sequence of multiple deviations and
argue that it cannot be profitable by itself, or else the OSD@BIevbe violated. This now means that if
you use the multiple-deviation strategy up to that point solidw the original OSDP strategy from that
point on, you would get at least as good a payoff (again, sc#we last deviation could not have been
the profitable one, so the original OSDP strategy will do asieas good in that subgame). You then go
up one step to the new “last” deviation and argue that thigatiem cannot be profitable either: since we
are comparing a subgame with this deviation and the oridd#DP strategy to follow with the OSDP
strategy itself, the fact that the original strategy sas®SDP implies that this particular deviation cannot
be profitable. Hence, we can replace this deviation with ttiemfrom the OSDP strategy too and obtain
at least as good a payoff as the multi-deviation strategy répeat this process until you reach the first
stage with a deviation and you reach the contradiction lsecthis deviation cannot be profitable by itself
either. In other words, if a strategy satisfies OSDP, it masiubgame perfect.

An example here may be helpful. Since in equilibrium we hdlldtaer players strategies constant when
we check for profitable deviations, the diagram in Fig. 3 jprits the strategies for the other players and
shows only player 1's moves at his information sets. Redhaéthis isnot an extensive-form game, just
a diagram of all of player 1's information sets (since higtggy must prescribe what to do at all of them)

2This doesnot hold for Nash equilibrium, which may prescribe suboptimaii@ns off the equilibrium path (i.e. in some
subgames).



and how they are reachable through his own actions at hisniraftion sets. The underlying EFG can be
arbitrarily complex, with multiple other players and lofsother actions in between these information sets.
Label the information sets consecutively with small Romamarals for ease of exposition. Suppose that
the strategy{adegi) satisfies OSDP. We want to show that there will be no more pigétother strategies
even if they involve multiple deviations from this one. Tokadhe illustration even more helpful, | have
bolded the actions specified by the OSDP strategy.

Figure 3: Diagrammatic illustration with= (adegi) satisfying OSDP.

Becausegadegi) satisfies OSDP, we can infer certain things about the orglefrthe payoffs. For
example, OSDP implies that changing frgnto / at (iv) cannot be profitable, which implies> v. Also,
at (v), changing from to j cannot be profitable, sp > z. At (ii), changing toc cannot be profitable;
since the strategy specifies playigat (iv), this deviation leads t@ > u. At (iii), changing to /' cannot
be profitable. Since the original strategy specifies (v), this deviation will lead ta: > y. Finally, at (i)
changing ta cannot be profitable. Since the original strategy specifediii), this deviation will lead to
w > x. The implications of OSDP are listed as follows:

at(): w=>x at(ii):w=>u at (i) : x > y at(ivy):u>v at(v):y > z.

These inequalities now imply that some further relatiopsramong the payoffs must be true: from the
first and the third, we geb > y, and putting this together with the last yields> z as well. Furthermore,
from the third and last we obtain > z, and from the second and fourth we obtain> v. Putting
everything together yields the following orderings of tlagypffs:

w>x>y>z and w>u> .

We can now check whether there exist any profitable mulgestéeviations. (Obviously, there will be no
single-stage profitable deviations because the stratdgpfisss OSDP.) Take, for example, an alternative
strategy that deviates at (ii) and (iv); that is in the subgatarting at (ii), it specifiesh. This will lead to
the outcomev, which cannot improve ow, the outcome from following the original strategy. Conside
another alternative strategy which deviates twice in tHegame starting at (iii); i.e., it prescribef;,
which would lead to the outcome This cannot improve ow, the outcome the player would get from
following the original strategy. Going up to (i), considestaategy that deviates at (i) and (v). That is, it
prescribed and; at these information sets. Since (v) is still never reactidd,actually boils down to a
one-shot deviation with the outcome which (not surprisingly) cannot improve an, which is what the
player can get from following the original strategy. Whatéf deviated at (i) and (iii) instead? This would
lead toy, which is also no better thamn. What if he deviated at (i), (iii), and (v)? This would leadzp
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which is also no better tham. Since all other deviations that start at (i) leave (ii) aiv)l ¢ff the path of
play, there is no need to consider them. This example themshow OSDP implies subgame-perfection.
Intuitively, if a strategy satisfies OSDP, then it implieseatain preference ordering, which in turn ensures
that no multi-stage deviations will be profitable.

To see how the proof would work here. Take the longest dewiate.g., a strategy that deviates at
(i), (i), and (v). Since it leaves (ii) and (iv) off the patlet’'s consider(bdfgj) as such a supposedly
better alternative. Observe now that becaistegi) satisfies OSDP, the deviation joat (v) cannot be
improving. This means that the strate@dfgi) is at least as good d%dfgj). Hence, if(bdfgj) is
better than the original, thefddfgi) must also be better. Consider n@bdfgi): since it matches the
original at (v), OSDP implies that the deviation focannot be improving. Hence, the stratg@ylegi)
is at least as good d%dfgi), which implies it is also at least as good(@g/fgj). Hence, if(bdfgj) is
better than the original, the@degi) must also be better. Howevébdegi) matches the original strategy
at all information sets except (i); i.e., it involves a ortisdeviation tab which cannot be improving by
OSDP. Sincébdegi) cannot improve oifadegi), neither can(bdfgj), a contradiction to the supposition
that it is better thatadegi).

What is the intuition for this result? Essentially, the pblesone-shot last-stage deviation tells you
which of the outcomes reachable from this stage are prééerab(iv), the OSDP says that player 1 must
not preferv to u. This “pins down” the relevant outcome for comparison atieastages: at (ii) the fact
that player 1 does not wish to deviatectéo obtainu means that he cannot prefeto w. Player 1 could
get tov with two deviations, but since we already established thist ¢annot improve om, it would
certainly not improve onw either. In other words, the check at (iv) has establishedrthgimumpayoff
that player 1 should expect from this stage o 60 if an earlier action leads to an outcome that is better
than this maximumay at stage (ii)), then the player would not want to deviate dnagder to get:, and
sinceu is the maximum he can get at (iv), he would certainly not warddviate multiple times to get to
v. Thus, we only need to consider the one-shot deviation)at (ii

This is how the proof unravels the deviations to establighSRE: OSDP at the last potential deviation
establishes the maximum that can be attained in the subgamiegthere, and all other payoffs reachable
from that point on are irrelevant for the comparisons thibfo Repeating this process for deviations at
earlier points continues establishing the maximum for ed¢he stages until the first stage for that player
is reached.

Let's now see what OSDP gets you. Consider the game in Fig.jpThe SPE, which you can obtain
by backward induction, i§(bf), d), with the outcome3, 3).

2,2 3,3
Figure 4: The One-Shot Deviation Principle.

Let's now check if player 1's strategy is indeed subgamegueigiven player 2's choice af. Recall that
this requires that it is optimal for all subgames. This isydassee for the subgame that begins with player
1's second information set that follows histaily, d). How about player 1's choice at the first information
set? If we were to examine all possible deviations, we mustickthe alternative strategiése), (af), and

10



(be) because these are the other strategies available for thgasie. The one-shot deviation principle
allows us to check just one thing: whether player 1 can bebgfitleviating fromb to a at his first
information set. In this case, deviatingdavould get player 1 a payoff of 1 instead of 3, which he would
get if he stuck to his equilibrium strategy. Therefore, téwiation is not profitable. We already saw that
deviating toe in the subgame that begins with player 1's second informadiet is not profitable either.
Therefore, by the OSDP, the strategy is subgame perfect.

Suppose you did not know that SPE strategy from backwardctimuand just wanted to see if some
strategy, saybe), is subgame perfect givehby player 2. If the strategy is followed, player 1's payoff is
2. If he deviates at his first information set and follows ttrategy thereafterae), his payoff will be 1,
so not an improvement. If he deviates at his first informagsienonly,(b 1), his payoff will be 3, which is
an improvement. Thereforée) does not satisfy OSDP and cannot be subgame perfect.

What if we started by thinking that player 2's strategyisConsider(bf) for player 1. Deviating at
the second information sethe), is not profitable in that subgame. What about deviatingutf) at the
first information set? Doing so yields 1, which is an improesinto (be), whose payoff is 0. Therefore,
bf does not satisfy OSDP when player 2 is choogingVhat strategy does? Since we know that it has
to involve choosingf at the second information set, we can conclude @A) satisfies OSDP against
For SPE, however, we must make sure that the strategies tloplayers satisfy OSDP. If player 2 sticks
with ¢, her payoff will be 1. If she deviates at her stageftdher payoff will be 3. Therefore does not
satisfy OSDP, and the strategy proffle /), c) is not SPE. Since the only alternative is player 2 choosing
d, the above result that concluded tliaf) satisfies OSDP againgtyields the original SPE solution.

The one-shot deviation principle holds for infinite horizgaames with bounded payoffs (payoffs do not
explode to infinity) as well. Repeated games with discognsiatisfy this property because lims, 8 g; (a’) =
0, which means that the infinite sums yield finite numbers. Bséhgames, payoffs that are sufficiently
far in the future become negligible, which means that theynotaffect strategic behavior in the present.
Effectively, this implies that any profit from infinitely mgrdeviations must be obtainable with a finite
number of deviations; that is, it must be accumulated aftaresfinite number of periods. But then we can
apply the logic of Theorem 1 to establish the OSDP for theseegeas well.

We shall make heavy use of OSDP in the infinitely repeated gahs we shall consider next. Even if
OSDP is not helpful in finding SPE, it is extremely useful imifygng whether a strategy profile is one.
In the infinitely repeated games, this will boil down to finglistructurally identical subgamesnder a
given strategy profile; that is, subgames that look idehficen that point on no matter where you start
them in the game. For example, under {lé& C), each period begins a structurally identical subgame
that entails mutual cooperation from this point onward ¥ere Thus, any strategy that specifies this
profile being played forever after certain contingenciel imrolve the “same” subgame for each of these
contingencies. We will only need to check for a single-periteviation then rather than for all periods
where this profile is being played.

But we are getting ahead of ourselves. Before we can discyssfahis, we need to establish some
preliminary notation and definitions.

4 Infinitely Repeated Games

Games with an infinite time horizoff = oo are meant to represent situations where players are un-
sure about when precisely the game will end (or, alternigtiemy situation in which there is no defined
endgame to condition their strategic behavior). The seigaflieria of an infinitely repeated game can
be very different from that of the “similar” finitely repeatgame because players can use self-enforcing
rewards and punishments that do not unravel from a termirabg. We begin with the somewhat trivial
result that non-contingent strategies that specify stggee Nash equilibrium play produce SPE in the
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infinitely repeated game as well.

PROPOSITIONS. Supposel’ = oo. If o is a non-contingent strategy profile such tldt:’) is a stage-
game Nash equilibrium forall = 1, ..., T, theno is SPE in the repeated game. 0

Proof. Consider some arbitrary periad Sinceo (h') is a stage-game Nash equilibrium, no player has
an incentive to deviate in order to improve their payoff imipe . Moreover, sincer is non-contingent,
no deviation will have any effect on future payoffs eithehefefore, no player will deviate in periad
Since the subgame that starts in period identical to the entire repeated game, this applies feryev
subgame. n

This result tells us that repeated play does not decreassetted equilibrium payoffs. Also, since the
only reason not to play a static best response (Nash equitibof the stage game) is concern about the
future, it follows that if the discount factor is low enoughgn the only Nash equilibria of the repeated
game will be the strategies that specify a static equiliarat every history to which the equilibrium gives
positive probability. Note that the same static equilibrimeed not occur in every period. In infinitely
repeated games, the set of Nash equilibrium continuatigofpeectors is the same in every subgame.

4.1 Folk Theorems

There is a set of useful results, known as “folk theorems’rémeated games, which assert that if players
are sufficiently patient, then afgasible individually rationalpayoffs can be supported by an equilibrium.
Thus, withé close enough to 1, repeated games allow virtually any pagdfe an equilibrium outcome.
To show these results, we need to get through several defigiti

DEFINITION 2. The payoffy(vy, va, ..., v,) arefeasiblein the stage gamé& if they are a convex com-
bination of the pure-strategy payoffs@h The set of feasible payoffs is

V = convex huII{v|EIa € Awith g(a) = v}.

In other words, payoffs are feasible if they are a weightegtaye (the weights are all non-negative
and sum to 1) of the pure-strategy payoffs. For example, t®fer's Dilemma in Fig. 1 (p. 4) has four
pure-strategy payoffg,10, 10), (0, 13), (13,0), and(1, 1). These are all feasible. Other feasible payoffs
include the pairqv,v) with v = «(1) + (1 — «)(10), with « € (0, 1), and the pairqv, v2) with
v1 = «@(0) + (1 —a)(13) with vy + v, = 13, which result from averaging the payofi$, 13) and(13, 0).
There are many other feasible payoffs that result from @wegamore than two pure-strategy payoffs. To
achieve a weighted average of pure-strategy payoffs, tnge@ can use a public randomization device.
To achieve the expected payoffs5, 6.5), they could flip a fair coin and playC, D) if it comes up heads
and(D, C) if it comes up tails’

3They can also achieve these payoffs with independent raizdtions. Letx be the probability with which playerchooses”
(since the players are symmetric, this probability will be same for both). Then, we require that (C, x) + (1 —x)u; (D, x) =

6.5, which means that:
_ 65—u;(D,x)

T u(Cox) —ui (D, x)
But since—i also playsC with probability x, we know that; (C, x) = 10x andu; (D, x) = 1 + 12x, which yields
_ 12x =55
o2x+1 7

which is the quadrati2x? — 11x 4 5.5 = 0 with a discriminant of/7. Since the larger root exceeds 1, it is not a valid probapbilit
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U2
(0, 13)

¢ D (1,1)
Cc | 10,10 | 0,13
D| 13,0 | 1,1 (10, 10)

Figure 5: Convex hull and individually rational payoffs fibie Prisoner’'s Dilemma.

The convex hull of a set of points is the smallest convex setatoing all the points. The sét is easier
to illustrate with a picture. Consider the Prisoner’s Dilamfrom Fig. 1 (p. 4), reproduced in Fig. 5 (p. 13)
along with its convex hull.

In this example, the vertices of the convex hull are just thgoffs from the certain outcomes, and the
polygon they create encloses all feasible payoffs. Thawisty pair of payoffs inside that polygon can be
attained with an appropriate randomized strategy profibe.ifstance, consider the paydf, 2). This can
be attained with mixed strategiég, ¢) that solve the following system of equations:

p[10)g + (0)1 —g)] + 1 = p)[13¢ + (D)1 —¢)] =7
q[(10)p + )1 = p)] + 1 =)[13p + (D1 = p)] = 2.

This produces the quadrafiép? — 133p + 18 = 0, with the discriminantD = 15, 817. Since the larger
root exceeds 1, the solution is at the smaller root:

133 - /15,817

~ 0.1391,
52

4
which then yields
12p—1
2p+1
You can verify that this does produce the required payoffsdino the rounding error):

=~ (0.5235.

q:

Ur(p.q) = (0.1391)(10)(0.5235) + (0.8609)(0.5235(13) + 0.4765) = 6.9972623 = 7.

Let's now computel” for the stage game shown to the left in Fig. 6 (p. 14). Therettanee pure-
strategy payoffs irG, so we only need consider the convex hull of the set of thrégqdg—2, 2), (1, —2),
and(0, 1), in the two-dimensional space.

The required mixing probability is then

11— /77
X = 1 =~ (0.556.

You can verify that this yields the requisite expected piyfufr the two players. Sometimes the payoff vector cannaittzned
with independent randomizations, and one could use a etimgldevice. There are folk theorems that do not requirg thit
things do get a bit technical without any obvious advantageye will not look at these results.
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(1.=2)

Figure 6: Convex hull and individually rational payoffs fGr.

As the plot on the right in Fig. 6 (p. 14) makes it clear, allmgeicontained within the triangle shown
are feasible payoffs (the triangle is the convex hull). Hoauld one obtain some payoffs, séy, 0), in
the convex hull? Consider a public randomization that assigeightsy; to (-2, 2), a, to (1,-2), and
a3 10 (0, 1) witho; > 0 and) ; o; = 1. Since these weights must produce the desired payoffs, iugpse
a system of equations:

Ol1(—2) + Olz(l) + 063(0) =0
Ol1(2) + 062(—2) + 063(1) =0.

Solving this system yields; = 1/5, anda, = a3 = 2/5. (Make sure you can do thf3.Players can use
this device to correlate their actions, which would causertho play(U, L) (or (M, R)) with probability
/s, play (M, L) (or (U, R)) with probability 2/s, and play{D, L) (or (D, R)) with probability 2/5 as well.

Consider now a minor modification of the stage game, as showeipayoff matrix on the left in Fig. 7
(p. 15). In effect, we have added another pure-strategyfpaythe game:(2, 3). What is the convex hull
of these payoffs? As the plot on the right in Fig. 7 (p. 15) nsakelear, it is (again) the smallest convex
set that contains all points. Note thét 1) is now inside the set. However, if it were a vertex, as indidat
by the dotted lines, then the hull would not be convex: alhpoin the triangle(—2, 2), (0, 1), (1,—-2)
would lie outside the set. Recall that a set of points is coiiivihe linear combination of any two points
is itself inside the set. In this instance, this requireg tha linear combinations df2,2) and (1, —2)
are all inside the set, which gives us the bounding line, twitimnvexifies the hull. All payoffs contained
within the triangle are feasible.

Consider, for instance, the feasible payoff vedthrl). How can these payoffs be attained? lpets
o01(U),q = 01(M), andr = 0,(L). We need:

Ui =p(1=3r)+qGBr—-2)+2(1—qg—-r(1—-r)=1
Up=r(l+p-3¢)+(1-r)3-5p—q) =1,

4From the first equation we gét; = a», and plugging this into the second equation tells us ¢hat= a3. Sincea; +
ap + a3 = 1, this tell us thatz; + 2a» = 1, and the first result tells us thai + 2(2a1) = 1, ora; = 1/5. The rest follows
immediately.
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Figure 7: Convex hull and individually rational payoffs G5 .

which yields the solutions

7 — 18r + 14r2 3
P =19 "52r 1 28,2 =r=3

3—16r + 14r2 8§8—v22 4 8 + /22
1= 19 52/ + 28,2 DA VI VI

where the restrictions onarise because andg must be valid probabilities. The binding condition on

is, therefore,
8 — /22
r<———.
- 14
There are clearly multiple solutions since the originateysis underdetermined, so let's try a very simple

one that satisfies the above requirement: 0, which yieldsp = 7/19 andg = 3/19. You can verify that
the expected payoffs are:

Ui1(p.q; R) = 7/19 —2(3/19) + 2(°/9) = 1
Ux(p.q; R) = —=2(7/19) + 2(3/19) + 3(°/19) = 1.

As expected, there exists at least one strategy profile tbksythe desired payoff. In more complicated
games it might not be possible to attain some payoffs witlepetident randomizations, in which case
players could use a correlating device.

We now proceed to define what we meanibglividually rational payoffs. To do this, we need to
answer the question: “What can a player guarantee himselhyngiven game?” That is, what is the
lowest payoff that the other players can possibly hold theatgr to? You can think of this as the harshest
punishment that the other players can inflict on that plaji@compute this, we recall that since the player
would best-respond to any set of strategies for the othgrepta we must find the maximum that this
player can obtain when he expects the others to play stestelgisigned to minimize his payoffs. Here'’s
the formal definition:

DEFINITION 3. Playeri’s reservation payoff (or minimax valugis

o

v; = min [ rr;ani (ai»Ol—i):|-
13
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In other wordsyp; is the lowest payoff that playels opponents can hold him to by any choicecof;
provided that playef correctly foresees—; and plays a best response to it. lne‘ii be theminimax
profile against playe¥, and letm; be a strategy for player such thatg; (m;,m' ;) = v;. Thatis, the
strategy profilem;, m' ;) yields playeri’s minimax payoff inG (there could be different strategy profiles
to minimax different players).

Let’s look closely at the definition. Consider the stage gdniustrated in Fig. 6 (p. 14). To compute
player 1's minimax value, we first compute the payoffs to hisepstrategies as a function of player 2's
mixing probabilities. Let; be the probability with which player 2 chooseés Player 1's payoffs are then
vy (q) = 1—3q,vpm(g) = 3q —2,andvp(q) = 0. Since player 1 can always guarantee himself a payoff
of 0 by playing D, the question is whether player 2 can hold him to this paypfblaying some particular
mixture. Sinceg does not entevp, we can pick a value that minimizes the maximunwegf and vy,
which occurs at the point where the two expressions are egodlso-3g + 1 =3¢ —2 = g = /.
Sincevy (1) = vapr(1/2) = — 1/, player 1's minimax value is D.

Finding player 2’s minimax value is a bit more complicateddese there are three pure strategies for
player 1 to consider. Lepy; and pps denote the probabilities df and M respectively. Then, player 2’s
payoffs are

vp(pu.pm) =2(pu — pm) + (1 — pu — Pm)
vr(pu. pm) = —2(pu — pm) + (1 = pu — pm),

and player 2’s minimax payoff may be obtained by solving

min max[vz (pu. pm). vr(pU. pm)]-
PU,.PM
By inspection we see that player 2's minimax payoff is 0, watigattained by the profil(%, % 0). Unlike
the case with player 1, the minimax profile here is uniquekgeined: If py > pyr, the payoff tol is
positive, if ppsr > pu, the payoff toR is positive, and ifpy = pas < % then bothL and R have positive
payoffs. We conclude that in the garée the minimax payoffs ar€0, 0).

Consider now the gamé,, illustrated in Fig. 7 (p. 15). Leg be the probability with which player 2
choosed.. Player 1's payoffs are themy(q) = 1 — 3q, vpyr(¢) = 3¢ — 2, andvp(g) = 2 — 2¢q. Since
vp(g) > vy(q), that is, strategyl is strictly dominated byD, we can ignorel/ in our calculations:
player 1 would only choose betwedii and D when player 2 is trying to minimize his payoffs. Setting
vpm (q) = vp(q) and solving yields; = 4/5. For anyg > 4/s player one would choos&f, and for any
q < 4/5 he would choosé®. Thus, the minimum to which player 2 can hold him occurg at 4/5, where
his payoff is2/s. This is player 1's minimax payoff ir,.

Turning now to player 2's minimax payoff, observe that play/&vould never choos® when attempting
to minimize her payoffs because choosimgis preferable in that regard irrespective of what player@sdo
It is then clear that with the remaining strateglésand M, player 1 can hold player 2 to a payoff of O if
he randomizes between them with equal probability. Thuesyesl 2’'s minimax payoff inG, is zero. We
conclude that in the gam@&,, the minimax payoffs ar€2/s, 0).

It is important to realize thahinimax strategies— strategies where players try to minimize the payoff
of another player, who in turn does the best possible und@ecithumstances — are generatigt a Nash
equilibrium even though the targeted player is best-redimgn This is so because it might not be optimal
for the other players to choose the strategies that minithiaeplayer’s payoff given his response. The
only exception where the two coincide are strictly competi{zero-sum) gamésin these games, a gain

SNote that maxvy (q), var(g)) < 0 for anyg € [1/3,2/3], so we can take any in that range to be player 2's minimax
strategy against player 1.
6A very brief overview is provided in Appendix A.
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for any one player is an automatic loss for everyone elsechwitieans that players have incentives to
minimize each other’s payoffs. Selecting the best resmofreen the set of strategies that minimize the
opponents’ payoffs results in a Nash equilibrium in mininséategies. The solution concept involving

minimaxing strategies was developed by von Neumann and éngtgrn before Nash equilibrium as the
solution to strictly competitive games. Of course, it is efywlimited applicability since most interesting

games are not strictly competitive.

For our purposes, you need to remember that (i) the stratégag minimax any given player do not
have to be, and generally will not be, a Nash equilibrium diiiferent players are generally minimaxed in
different strategy profiles, and (iii) the minimaxing stgy profiles do not have to be in pure strategies.
The Prisoner’s Dilemma is especially misleading as an el@in@cause it is not a strictly competitive
game, yet the solution is in minimax strategies, which deonf@ Nash equilibrium, with both players
minimaxing each other in it.

The minimax payoffs have special role because they deterthareservation utility of the player. That
is, they determine the payoff that players can guarantgadéles in any equilibrium.

ProOPOSITION4. Playeri’s payoff is at leasb; in any static equilibrium and in any Nash equilibrium of
the repeated game regardless of the value of the discoutarfac 0

This observation implies that no equilibrium of the repdagame can give playéra payoff lower than
his minimax value. We call any payoffs that Pareto-domiriageminimax payoffsndividually rational .
In the example gamé&, the minimax payoffs ar€0, 0), and so the set of individually rational payoffs
consists of feasible paif@1, v2) such thatv; > 0 andv, > 0. The set is indicated by the red triangle.
The analogous payoffs in the garfig, where the minimax payoffs a(é/s, 0). The set is indicated by the
red polygon. More formally,

DEFINITION 4. The set ofeasible strictly individually rational payoffs is the set
{ve Vv >y, Vi}.

We now state two very important results about infinitely sgpd games. Both are called “folk theo-
rems” because the results were well-known to game thedr$tse anyone actually formalized them, and
S0 no one can claim credit. The first folk theorem shows thgtfeasible strictly individually rational
payoff vector can be supported in a Nash equilibrium of theeated game. The second folk theorem
demonstrates a weaker result that any feasible payoff vttab Pareto dominates any static equilibrium
payoffs of the stage game can be supported in a subgametpagtelbrium of the repeated game.

THEOREM 2 (A FOLK THEOREM). For every feasible strictly individually rational payofis there exists
é < 1 such that for alls € (8, 1) there is a Nash equilibrium af(§) with payoffsv. o

Proof. Assume there is a pure strategy profilsuch thaig(a) = v.” Consider the following strategy
for each playei: “Play a; in period 0 and continue to play; as long as (i) the realized action profile in
the previous period was, or (ii) the realized action in the previous period diffeffeaim « in two or more
components. If in some previous period playevas the only one not to follow profile, then each player
J playsm’, for the rest of the game.”

Can playeri gain by deviating from this profile? In the period in which hevidtes, he receives at
most may g; (a) and since his opponents will minimax him forever after, h# @btain v; in all periods
thereafter. Thus, if playerdeviates in period, he obtains at most

(1—=8"v; + 8°(1 —6) maxg; (a) + § 1y,

"This is unnecessary. The proof can be modified to work in cakesev cannot be generated by pure strategies. It is messier
but the logic is the same.
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To make this deviation unprofitable, we must find the valué siich that this payoff is strictly smaller
than the payoff from following the strategy, whichus

(1= 8"v; + 8 (1 — 8y maxgi(a) + 8 y; < vy
8(1 - 8) maxg; (a) + § 1y, < 8y

(I —8)maxg;(a) + dv; < v;
a
For each playei we define the critical level; by the solution to the equation
(1-36;) maani(a) + ;v = vi.

Becausey; < v;, the solution to this equation always exists with< 1. Takingé = max §; completes
the argument. Note that when deciding whether to deviaggiepl assigns probability 0 to an opponent
deviating in the same period. This is what Nash equilibrivequires: Only unilateral deviations are
considered. -

The intuition of this theorem is that when the players aréepétany finite one-period gain from devi-
ation is outweighed by even a small loss in utility in evertufe period. The proof constructs strategies
that are unrelenting: A player who deviates will be minindkeevery subsequent period.

Although this result is somewhat intuitive, the strategised to prove the Nash folk theorem are not
subgame perfect. The question now becomes whether theusatlof the folk theorem applies to the
payoffs of SPE. The answer is yes, as shown by the variousqiddik theorem results. Here we show a
popular, albeit weaker, one due to Friedman (1971).

THEOREM 3 (FRIEDMAN, 1971). Leta™ be a static equilibrium with payofts Then for anyw € V with
v; > ¢; for all playersi, there is & < 1 such that for alls > § there is a subgame perfect equilibrium of
G (8) with payoffsv. 0

Proof. Assume there is a strategy profilessuch thag (a) = v.2 Consider the following strategy profile:
“In period 0 each player playsa;. Each playei continues to playi; as long as the realized action profiles
wered in all previous periods. If at least one player did not plagaading toa, then each player playg
for the rest of the game.”

This strategy profile is a Nash equilibrium ftarge enough that

(1 — &) maxg;(a) + fe; < v;.
a

This inequality holds strictly at = 1, which means it is satisfied for a rangeso& 1. The strategy profile
is subgame perfect because in every subgame off the edquitipath the players play™* forever, which
is a Nash equilibrium of the repeated game for any statidieguim o *. n

Friedman’s theorem is weaker than the folk theorem excepases where the stage game has a static
equilibrium in which players obtain their minimax payoffBhis requirement is quite restrictive although
it does hold for the Prisoner’s Dilemma. However, there adgut folk theorems that show that for any
feasible, individually rational payoff vector, there isamge of discount factors for which that payoff vector
can be obtained in a subgame perfect equilibrium.

8Again, if this is not the case, we have to use the public rarizimion technique that | mentioned above.
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The folk theorems show that standard equilibrium refineséké subgame perfection do very little
to pin down play by patient players. Almost anything can lepm a repeated game provided that the
players are patient enough. It is troubling that game th@ooyides no mechanism for picking any of
these equilibria over others. Scholars usually focus orobtiee efficient equilibria, typically a symmetric
one. The argument is that people may coordinate on efficmuntileria and cooperation is more likely in
repeated games. Of course, this argument is simply a jatdit and is not part of game theory. There
are other refinements, e.g. renegotiation proofness, edatces the set of perfect equilibrium outcomes.

4.2 Repeated Prisoner’s Dilemma

Let G(3) be the infinitely repeated game whose stage-gamis,shown in Fig. 1 (p. 4), and where players
discount the future with the common factbe (0, 1).

4.2.1 Grim Trigger

Let us use a strategy from the class used in the proof of The8reln G(3), there is a unigue reversion
Nash equilibrium in the stage game, and so there is only octe Stuategy: it is calleérim Trigger , and

it prescribes punishing a deviation from the prescribed plareverting to the unique Nash equilibrium
with mutual defection for the remainder of the game. Let wswhat the maximum discounting can be
in order to support a SPE with perpetual cooperation. Tleegjys; prescribes cooperating in the initial
period and then cooperating as long as both players coegeratll previous periods:

C ift=0
sithhy=14cC ifa® =(C,C)fort =0,1,...,t —1
D otherwise

Consider nows* = (s1,s2). From Therem 3, we know that cooperation can be sustainedngsds
each player is willing to follow the equilibrium path rathédran to trigger the punishment. Since the
best deviation is to unilateral defection, ma¥% (a) = 13, and the Nash reversion is to mutual defection,
¢; = 1, we conclude that the desired equilibrium path with mutealperationy; = 10, can be sustained
by these strategies if

>log

4
We conclude that the smallest discount factor that can isustaoperation inG(§) is§ = /4. The
derivation makes it clear that harsher punishments (smallaes ofe;) allow cooperation to be supported
with a wider range of discount factors (smalégr

Perhaps you are not convinced by this calculation? Let usviirgfy thats* is a Nash equilibrium of
the repeated game. If both players follow their equilibristrategies, the outcome will be cooperation in
each period:

vi > (1—8)maxgi(a) +8e; < 10>(1—=8)13)+8(1) & 8>

(C.0),(C,C),(C.C),....(C.C),...

whose average discounted value is
o0 o0
(1-8)> §(C.C)= (-8 §(10) = 10.
t=0 t=0

Consider the best possible deviation for player 1. For sudévaation to be profitable, it must produce a
sequence of action profiles which has defection by some agesome period. If player 2 follows,
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she will not defect until player 1 defects, which impliestthgrofitable deviation must involve a defection
by player 1. Letl" whereT € {0, 1,2,...} be the first period in which player 1 defects. Since player 2
follows s5, she will play D from periodT + 1 onward. Therefore, the best deviation for player 1 gensrate
the following sequence of action profils:

(C,0),(C,C),...,.(C,C),(D,C),(D,D), (D, D),...,

T times periodT

which generates the following sequence of payoffs for pldye

10,10,...,10,13,1,1,....
~————

T times

The average discounted value of this sequené® is:

(1— 5)[10 + 8(10) + 82(10) + -+ 4+ 8T1(10) + 6T (13) + 6T+ (1) + 6T+2(1) + ]

T 1

=(1=8)| ) 810 +87(13) + Z 81(1)
| =0 t=T+1

B [(1-8Ty10) , §T+1(1)

=10+ 387 — 1267 +1!

Solving the following inequality fos yields the discount factor necessary to sustain cooperatio

10+37 1287t <10 & 8>

FNY

Deviation is not profitable for any > 1/4, sos™ is a Nash equilibrium. Note that this analysis only
considers deviations from the equilibrium path of play bo#sl not check for deviations off the path; i.e.,
it does not check whethef* is SPE.

Let us now use OSDP to verify that is a SPE ofG(6). Recall that that a strategy profile is a SPE of
G (%) if, and only if, no player can gain by deviating once after aistory, and conform to their strategy
thereafter.

Consider first all histories of the typé = ((C,C),(C,C),...,(C,(C)), that is, all histories without
any defection. For player 1, the average discounted payaff fall these histories is 10. Now suppose
player 1 deviates at some periodnd returns te* from ¢ 4+ 1 onward (the one-shot deviation condition).
This yields the following sequence of action profiles:

(C,0),(C,C),....(C,C),(D,C),(D.D), (D, D),...,

t times period?

9Note that the first profile is playefl times, from period 0 to perioff — 1 inclusive. That is, ifl’ = 3, the(C, C) profile is
played in periods 0, 1, and 2 (that is, 3 times). The sum of &y®fis will beZ,T;(,l §1(10) = ?=0 §%(10). That is, notice that
the upper limitisT — 1.

101t might be useful to know that

d t o t t T+1 t 1_5T+1
8 = 8 — 1) -4 8=
2= > Z o5

t=T+1
whenever € (0, 1).
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for which, as we saw before, the payoffli@ + 357 — 126’ T1. This deviation is not profitable as long as
§ > /4. Therefore, if players are sufficiently patient, deviatfrgm s* by defecting at some period is not
profitable.

Consider now all histories other thagC, C), (C,C),...,(C,C)), that is histories in which some
player has defected. (These are off the path of play, so radt@&ed by Nash equilibrium.) We wish
to check if it is optimal to stick to*. Suppose the first defection (by either player) occurredeitiopl z.
The following sequence of action profiles illustrates theecaf player 2 defecting:

(C,C),(C,C),...,(C,C),(C,D),(D,D),(D,D),....

t times periodz

The average discounted sumlig— 108 + 871, (You should verify this!) Suppose now that player 1
deviates and play€' in some period” > ¢. This generates the following sequence of action profiles:

(C,C),(C,C),...,(C,C),(C,D),(D,D),....(D,D),(C,D),(D,D),(D,D),....

t times period¢ T —t—1 times periodT

Clearly, this must be worse than sticking with defectioTiimutual defection is, after all, an equilibrium
of the stage game), but let’s verify it anyway. The averagealinted sum of this streamii8 — 105 +
s+t — (1 —6)8T. (You should verify this as wefit) Sincel — § > 0, this is strictly worse than sticking
with the equilibrium strategy, and so this one-shot destais not profitable irrespective of the discount
factor.

Because there are no other one-shot deviations to conpldger 1's strategy is subgame perfect. Sim-
ilar calculations show that player 2’s strategy is alsoropti and sa™* is a subgame perfect equilibrium
of G(§) aslong a$ > /4.

You might have noticed th&rim Trigger punishes deviations irrespective of the identity of theypita
In a sense, it looks like a player is punishing their own pastavior. You might be tempted to consider a
strategy calledNaive Grim Trigger, which prescribes cooperating while the other player coaips and,
defecting forever after the other player has deviated:

C ft=0
sith'y =1C ifal=C,j#i forr=01,....1 -1
D otherwise

To see whethes* = (s1,52) is a SPE 0fG (), we check whether it satisfies OSDP. Consider the history
h! = (C, D), that is, in the initial history, player 2 has defected. Hy#r 2 now continues playing, the
sequence of action profiles will result in:

(D.C),(D,D),(D,D),...,

for which the payoffs ar@, 1, 1, ..., whose discounted average valué.idf player 2 deviates and plays
D instead ofC in period 1, she will get a payoff of 1 in every period, whosscdunted average value is

1170 get this result, simplify the sum of payoffs

t—1 T-1 [e%e) t—1 [ele)
YA+ O+ Y M+ + Y M =10-) 6+ Y -6,

=0 T=t+1 t=T+1 =0 T=t+1

and normalize by multiplying byl — §), as before.

21



1. Sinces < 1, this deviation is profitable. Therefor€! is not a subgame perfect equilibrium. You now
see why | called this strategy naive.

The notion that one must punish one’s own deviation is misiep however. To see this, suppose that
player 1 deviates but in the next period instead of “punigtiimself” by defecting, he cooperates. Clearly
there cannot be an equilibrium, in which player 2 does naeatedespite this—if this were the case, there
would be no punishment for player 1's defection to begin wéih non-Nash play could not be sustained
in equilibrium. But if player 2 is going to defect no matteraththen there is no reason for player 1 to not
“punish himself” by defecting. If he cooperated insteadwueild be getting the worst possible payoff in
the stage game. Thus, him defecting following his own dawias a best response to the expectation that
the other player will punish him for that defection, and igdfa way to avoid punishing himself with extra
costs!?

4.2.2 Tit-for-Tat

Consider now the strategy called Tit-for-Tat . This strategy prescribes cooperation in the first period
and then playing whatever the other player did in the pres/jperiod: defect if the other player defected,
and cooperate if the other player cooperated:

C ift=0
sithhy=1{C ifaj._1=C,j #1
D otherwise

This is the most forgiving retaliatory strategy: it punist@ne defection with one defection and restores
cooperation immediately after the other player has resucoegerating. It was made famous by the
simulations ran by Robert Axelrod that seemed to estabfislstrategy as being almost an evolutionary
necessity. It might come as a shock to learn that the strésegyt subgame perfect.

Consider the strategy profild = (s1, s2). We cannot use Theorem 3 because the punishment is not a
Nash equilibrium in the stage game. We shall use OSDP instHagl game has four types of subgames,
depending on the realization of the stage game in the lagichefo show subgame perfection, we must
make sure neither player has an incentive to deviate in attyese subgames.

1. The last realization wa&, C).1 If player 1 followss, then his payoff is

(1 —8)[10 + 108 4+ 1082 4 1083 4 ---] = 10.
If player 1 deviates, the sequence of outcomé®disC), (C, D), (D, C),(C, D), ..., and his payoff
will be A
(1—=8)[13 408 + 1362 + 08> + 136* + 08> + ---] = 3

12) will leave it as an exercise to see whether it is possibleusiain an equilibrium where the deviating player cooperate
the following period despite being punished.
13This also handles the initial subgame.
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(Hint: To calculate this, partition the payoffs and try siifosing x = §2).14 Deviation will not be
profitable whenl0 > 13/(1 + &), or wheneves > 3/19 = §.

2. The last realization wag’, D). If player 1 followssy, the resulting sequence of outcomes will be
(D,C),(C,D),(D,C),...,towhich the payoff (as we just found out above)3g(1+6). If player
1 deviates and cooperates, the sequence willh€ ), (C, C), (C,C),.. ., to which the payoff is
10. So, deviating will not be profitable as long &/ (1 + §) > 10, which means$ < 3/10. We are
already in hot water here: Only= 3/1¢ will satisfy both this condition and the one above.

3. The last realization wa@, C). If player 1 followss;, the resulting sequence of outcomes will be
(C,D),(D,C),(C,D),..., which the same as one period @, D) followed by the discounted
alternating sequence we examined above. This means thaayo# is(1 — §)0 4+ 6(13/(1 +4)) =
136/(1 + §). If player 1 deviates, the sequence of outcomes wil(BeD), (D, D), (D, D), ...,
to which the payoff is 1. Deviation will not be profitable wheser135/(1 + 6) > 1, which holds
for § > 1/12. Since this is less than the minimum required abéwesmains the binding minimum
discount factor.

4. The last realization wa@, D). If player 1 followss;, the resulting sequence of outcomes will be
(D, D), (D, D), (D, D),..., to which the payoff is 1. If he deviates instead, the segeievit be
(C,D),(D,C),(C,D),..., towhich the payoff id13§/(1 + §). Deviation will not be profitable if
1 > 135/(1 4 8), which is true only fols < 1/12 < §, which is not possible wheh > §.

It turns out, then, thatit-for-Tat is not subgame perfect because there exists no discount factaraha
rationalize both sustaining cooperation against the pumént of alternating unilateral defections, and
perpetual mutual defections against this punishment regirhe latter is not surprising: perpetual mutual
defection is the worst that can happen to the players in #isey and so even relatively small discount
factors can make other strategies preferable. Indeedisthisw we can sustain any feasible individually
rational payoffs under Theorem 3. SinEtie-for-Tat would not restore cooperation after mutual defection,
it becomes too retaliatory. This is because the punishnegine is not severe enough, which also explains
the higher discount factor necessary to sustain cooparatiahe first place. This suggests that some
modification of the punishment regime is in order.

14The payoff can be partitioned into two sequences, one inlwihie per-period payoff is 13, and another where the pegeri
payoff is 0. So, letting: = §2 as suggested, we obtain:

13 408 + 1362 + 083 + 136* +08° +138° + -

=134 1362 + 136* +136% 4+ --- + 05 4+ 05> + 086° + - -
=131+ 82 +6* +68% + -]+ 08[1 + 6% +8* +---]

= (134 08)[1 462 +68* +68°+---]

=131 +x+x2+x3 x4+

:13(1ix)

13 13

T8 0-80+9)

Which gives you the result above when you multiply itldy- §) to average it. | have not gone senile. The reason for keeping t
multiplication by 0 above is just to let you see clearly howayeould calculate it if the payoff frondC, D) was something else.
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4.2.3 Limited Retaliation

If Grim Trigger is entirely unforgiving and iit-for-Tat the severity of the punishment depends on the
behavior of the other player, lnmited Retaliation (sometimes called “Forgiving Trigger”), the punish-
ment lasts for a specified finite number of periods irrespedf what the other player does. The strategy,
si, prescribes cooperation in the first period, and thenk < oo periods of defection for every defection
of any player, followed by reverting to unconditional coma@én no matter what has occurred during the
punishment phase:

e Cooperative Phase:

A) cooperate and switch to Cooperative Phase B
B) cooperate unless some player has defected in the prepened, in which case switch to
Punishment Phase and set 0;

e Punishment Phase: if < k, sett = ¢ + 1 and defect, otherwise switch to Cooperative Phase A.

We shall use OSDP again. Suppose the game is in the coopepétase (either no deviations have
occurred or all deviations have been punished). We havedokchether there exists a profitable one-
shot deviation in this phase. Suppose player 2 folleyvdf player 1 followss; as well, the outcome will
be(C, C) in every period, which yields an average discounted paydifo If player 1 deviates t® once
and then follows the strategy, the following sequence abagtrofiles will result:

(D,C).(D,D),(D,D),....(D,D),(C,C),(C,C),...,

k times

with the following average discounted payoff:

o0
(1—5)[13+5+52+~~+5k+ 3 5%10)] — 13— 126 + 98k +!
t=k+1

Therefore, there will be no profitable one-shot deviatiorthi@ cooperation phase if, and only if3 —
128 + 98*+1 < 10, orif
48 — 38k+1 > 1. (LR)

Let us first ask the usual question: given a punishment foresdunation, what is the minimum discount
factor necessary to sustain cooperation?

If & = 1, condition (LR) is satisfied by any > 1/. If k = 2, then (LR) is satisfied by an§ >
(v/21 — 3)/6 ~ 0.264. If k = 3, then (LR) is satisfied by any Z 0.253. Generally, observe that the
left-hand side of (LR) isncreasingin k, and since the right-hand side is constant, the only waysiore
the equality at the lower bound is tiecrease’. In other words, as the number of punishment periods
increases, the minimum discount factor necessary to sustaperation must decrease (it will be easier to
do it). Moreover, since

lim 48 — 3651 = 45,

[—o00
it follows that the smallest discount factor converges! tpas the punishment becomes infinitely long.
This should not be surprising with this type of punishmeme Limited Retaliation strategy becomes the
Grim Trigger , and we already found thét= 1/, there. A shorter punishment requires that players care
more about the future (higher discount factors) so thatmieler costs it implies will be magnified by the
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shadow of the future. We have already seen that the shouestminishment (one period only) requires
§ = 1/3, which is actually pretty good since it is not very demanding

It might be more interesting to ask an alternative questiiven a particular discount factor, how many
periods of punishment are necessary to sustain cooper&@rthis, we need to solve (LR) far. Using
k* to indicate the point where (LR) obtains with equality, wé& ge

k(@) = [ In(8)

where we use the ceiling of the right-hand side becauseist be an integer. In other words, for any given
8, anyk > k*(8) would support cooperation. This might be a more relevanstipe if one is interested
in institutional design where the players and their dis¢dactor must be taken as given but where players
could setk as they see fit in order to facilitate cooperation.

Generally, the more patient players are, the shorter thisiponent periods need to be. To see this, let's
differentiatek* with respect ta@5, as follows:

8_
di* 4|n(5)_'”(%
ds | 46—1 §

) -In@)~2.

Some algebra shows that

41n(s) '”(T)
o1 5~ <0 & se(D.

which, as we have seen above, is satisfied. This implies that

dk*

95 < 0.

More patient players can design more lenient institutionisess patient players, on the other hand, must
rely on longer punishments to offset temptations to defé@f.course, if infinite punishments cannot
support cooperatior, < 1/4, then nothing will, and the unique would have to involve panent mutual
defection. Mathematically, we observe that

lim k* = [15] = 1,
§—1

so with extremely patient players the threat of just a simgdgod of punishment would be sufficient to
prevent deviations. Alternatively, lettingsolve (LR), we obtain:

lim § = 1/4.
k—o00
As we noted above, as the number of punishment periods gaiity, the Limited Retaliation strategy
converges t@rim Trigger , and as a result the minimum discount factor necessary taisusoperation
converges to the one we found for it.

I5Technically speaking, sindeis an integer, the increases will occur in a step-wise marafer each jump to the next highest
integer,k* would remain that same dsncreases until the increase causes the next jump.
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We now have to check if there is a profitable one-shot devidtidhe punishment phase. Suppose there
arek’ < k periods left in the punishment phase. If player 1 followsthe following action profile will be
realized:

(D,D),(D,D),...,(D,D),(C,C),(C,C),...,

k’ times

while a one-shot deviation at the beginning produces

(C,D),(D,D),...,(D,D),(C,C),(C,C),....

k’ times

Even without going through the calculations it is obviouattiuch deviation cannot be profitable. Thus,
following s; is optimal in the punishment phase as well. We can now doairodlculations for player 2

to establish the optimality of his behavior although it i necessary since she is also playing the same
strategy.

We conclude that for any > 1, Limited Retaliation can support a cooperative SPE provided players
are sufficiently patient® The fact that with very patient players even a single punéstinperiod is suffi-
cient to sustain cooperation shows the extreme (and largelgcessary) punishment ti@atim Trigger
imposes. It also shows that unlikét-for-Tat , which retaliates only once as long as the other player per-
mits it by unilaterally cooperatind,imited Retaliation can sustain cooperation in SPE. The reason is that
unlike Tit-for-Tat that bogs down in an interminable alternation of unilatelefiection and cooperation,
Limited Retaliation imposes the fixed punishment, and then unilaterally restoo®peration without
reference to what has happened in the past.

4.3 Punishment with Lower-than-Nash Payoffs

In the repeated Prisoner’'s Dilemma, the harshest punishthancan be imposed is perpetual defection,
which happens to be the unique Nash equilibrium of the stageeghat coincidentally provides the mini-
max payoffs of the players. But what if the minimax payoffe amaller than the lowest Nash payoffs? We
know, of course, from Theorem 2 that all feasible individaational payoffs can be realized in a Nash
equilibrium. It turns out that there is an even stronger ltebiat states that it is possible to implement
punishments very close to the minimax payoffs in SPE whensufficiently high. The following result
(Theorem 1 in Fudenberg & Maskin 1986) establishes the clam2-player games (which are the ones
we will study most). They provide a stronger result for npléyer games tod’

THEOREM 4 (MINIMAX FOLK THEOREM FOR2-PLAYER GAMES). LetG(8) be a game with two play-
ers. For every feasible strictly individually rational paffsv;, there exist$ < 1 such that for al € (8, 1)
there is a SPE of7(§) with payoffsv;. 0

18Note that “sufficiently patient” means that we can find sonsediint facto € (0, 1) such that the claim is true. When
doing proofs like that, you should always explicitly solez § to show that it in fact exists.

1"The proof for the 2-player game relies on the existence ofaesly profile where the players minimax each other. Such a
profile always exists in these games but might not exist irtinpldyer games, where the analogous requirement is thalbagers
minimax each other. This makes it possible to deviate pigfittiom the punishment phase (which cannot happen if oneiiggb
minimaxed). The proof in that case relies on offering snm@lards for participation in the punishment phase instead.
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Proof. Assume a public correlation device and observable mixtirelset m be the strategy profile
where each player uses the strategy that minimaxes the plénger, and letn; be playeri’s minimax
payoff1® Consider the following strategy:

e Cooperative Phase: start by playing the action profile thadycesv;, and continue to play it as
long as no deviation occurs. After any deviation, switchhi® Punishment Phase.

e Punishment Phase. Playfor T periods, wherd is sufficiently large to make the deviation un-
profitable (sincé < 1, this T is finite), then start the Cooperative Phase. If there aredamiations
during the Punishment Phase, restart it.

Before we establish that these strategies form a SPE, weoeedive the punishment periods. Denote the
highest attainable payoff in the stage gam@by= max, g; (a), and the payoff from the punishment phase
asy; = (1 —5T)gi(m)+8T v;, with v; > m;, and wherd is sufficiently high to ensure that the cooperative
payoff is strictly preferable to the best possible deviafilowed by punishmenty; > (1 —§)v; + §v;.2°
These definitions ensure that the strategies are SPE. Véglplnoted the condition that prevents devi-
ation from the Cooperative Phase. In the Punishment Phiaserp receives the average payeff. If he
deviates, he would obtain at mast in the first period (because the other player is minimaximg)hand
average at most; thereafter. Since; > m; such a deviation will not be profitable. n

As an example of a SPE that involves punishments that areasti,Monsider the game in Fig. 8 (p. 27).

L C R
U 10,10 3,15 0,7
M 15,3 7,7 —4,5
D 7,0 5—4 —15,-15

Figure 8: The Stage Game with Lower-than-Nash Punishments.

The unique Nash equilibrium of the stage gaméas, C), with payoffs(7,7). We can support the
Pareto-superior outcom@/, L) in SPE with aGrim Trigger threat of reverting ta M, C) after any de-
viation. Applying Theorem 3 witle; = 7, v; = 10, andm; = max, g;(a) = 15, we find that the

requirement for such SPE is:

m; — v; 5
= 3 = 0.625.

5>
m; —e;
Can we do better than that? For both players, the minimaxfpesya; = 0, and is attained byU, R) for
player 1 and D, L) for player 2. The action profile where the players choose th&iimax strategies is
(D, R), where their payoffs arg; (m) = —15. The best attainable payoffis = 15. We shall consider
a very brief punishment period withi = 1. Following the equilibrium strategies of playii§/, L) in the
cooperative phase yields = 10.
Suppose player deviates from the cooperative phase. The best deviatiamds & 15, followed by
one period ofg; (m), followed by return to the cooperative phase. The averagesBunent Phase payoff

18pyblic correlation makes it possible to obtain any feagialgoffs. Observable mixtures make it possible to detedttiens
from the equilibrium strategy when is not produced by some combination of pure strategies, dmai@ssumed in Theorem 2.

19That is,m; is what player 1 gets when player 2 minimaxes him. Playersdsilstrictly worse when they play: because
each is playing the strategy that minimaxes the other, wthiefs not give the best “defensive” payoff for themselwes,

20A pair § and T that satisfy these conditions always exists. To see thig &a&lose enough to 1 such that > (1 — §)7;
holds. WithT = 1, v; > m; as required (the punishment payoff is strictly better thenrhinimax payoff). If this is still too high
to satisfy the condition on;, raiseT .
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is thus

v; = (1-15) |:gi(m) + Zm,} = (1—8)gi(m) + 8v; = (1 —8)(=15) + 8(10) = 258 — 15.

t=0

The average payoff from the deviation is
(1 —8)v; 4 8v; = (1 —8)(15) + 8(256 — 15) = 15 — 308 + 258°.
To derives, we require that; = 10 > 15 — 308 + 2582, which yields
§>1/5=4,;.

Suppose the game is in the Punishment Phase. If players/fibikar equilibrium strategies, they will play

m once, followed by a return to the Cooperative Phase. As lzdatmliabove, players average payoff from
this isy; = 256 — 15. Since the players are using their minimax strategies, és¢ fpossible deviation
for playeri is to the minimax payoffiz; = 0, followed by restarting the punishment phase with average
payoff v;. Hence, the best deviation payoff ($ — §)(0) + dv; = §(256 — 15). This deviation is not
profitable as long as; > m;, which requires

§>3s5=34,.

Let§ = max(é,,$,). By the OSDP, the strategies are subgame perfect fof any/s

Thus, even with the briefest punishmé@ht= 1, we were able to extend the range of discount factors that
sustain cooperation frofyg down to3/s. Itis not much, but then we used the mildest possible purestim
Increasingl” would lower the minimum discount factor further.

5 Infinite-Horizon Bargaining

There are at least two basic ways one can approach the haggairoblem. (The bargaining problem
refers to how people would divide some finite benefit amonghd@ves.) Nash initiated the axiomatic
approach with his Nash Bargaining Solution (he did not ¢atat, of course). This involves postulating
some desirable characteristics that the distribution rmestt and then determining whether there is a
solution that meets these requirements. This is very premiim economics but we shall not deal with it
here.

Instead, we shall look at strategic bargaining. Unlike thimmatic solution, this approach involves
specifying the bargaining protocol (i.e. who gets to makersf who gets to respond to offers, and when)
and then solving the resulting extensive form game.

People began analyzing simple two-stage games (e.g. tltimgame where one player makes an offer
and the other gets to accept or reject it) to gain insighttimodynamics of bargaining. Slowly they moved
to more complicated settings where one player makes allffassavhile the other accepts or rejects, with
no limit to the number of offers that can be made. The mosa@ttre protocol is the alternating-offers
protocol where players take turns making offers and respgrad the other player’s last offer.

We have seen an application of the alternating-offers l@irggaprotocol in a finite-horizon game, where
we found that player 1 has a very strong first- and last-pesiihehntage (when he gets to make the ulti-
matum demand before the game ends). The rather strong eadgféeut looks particularly arbitrary in
situations where players do not have such a well-definedotipen about when bargaining must termi-
nate if no deal has been reached. The appropriate settiegshan infinite-horizon game.
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The infinite-horizon alternating-offers bargaining gamesvmade famous by Ariel Rubinstein in 1982
when he published a paper showing that while this game hastélji many Nash equilibria (with any
division supportable in equilibrium), it had a unique sulgaperfect equilibrium! Now this is a great
result and since it is the foundation of most contemporagrdiure on strategic bargaining, we shall
explore it in some detafit

5.1 The Basic Alternating-Offers Model

As before, two players, € {1, 2}, bargain over a partition of a pie of size> 0 according to the following
procedure. Attime = 0 player 1 makes an offer to player 2 about how to partition tiee ff player

2 accepts the offer, then an agreement is made and they dhedgie accordingly, ending the game. If
player 2 rejects the offer, then she makes a counteroffématrt = 1. If the counteroffer is accepted by
player 1, the players divide the pie accordingly and the ganus. If player 1 rejects the offer, then he
makes a counter-counteroffer at time= 2. This process of alternating offers and counteroffersinaet
until some player accepts an offer.

To make the above a little more precise, we describe the niodwhlly. The two players make offers
at discrete points in time indexed by= (0,1,2,...). Attime whent is even (i.e.; = 0,2.4,...)
player 1 offersx € [0, 7] wherex is the share of the pie 1 would keep amd- x is the share 2 would
keep in case of an agreement. If 2 accepts the offer, theiaivief the pie is(x, 7 — x). If player 2
rejects the offer, then at tinre+ 1 she makes a counteroffere [0, z]. If player 1 accepts the offer, the
division (& — y, y) obtains. Generally, we shall specify a proposal as an oddsa@, with the first number
representing player 1's share. Since this share uniquégrdenes player 2's share (and vice versa) each
proposal can be uniquely characterized by the share thegeopffers to keep for himseif.

The payoffs are as follows. While players disagree, neitbegives anything (which means that if they
perpetually disagree then each player’s payoff is zerajoiifie player agrees on a partition = — x) at
some time, player 1's payoff i’ x and player 2’s payoff i§’ (r — x).

The players discount the future with a common discount fagte (0, 1). The further in the future a
player gets some share, the less attractive this same st@ympared to getting it sooner.

This completes the formal description of the game. You cawdhe extensive form tree for several
periods, but since the game is not finite (there’s an infinibminer of possible offers at each information
setand the longest terminal history is infinite—the one where ptay@ways reject offers), we cannot
draw the entire tree.

5.2 Nash Equilibria

Let's find the Nash equilibria in pure strategies for this garust like we did with the simple repeated
games, instead of looking for the PSNE themselves, we sigalh find out what payoffs (here, divisions
of the benefit) can be supported in a PSNE. It turns outdhgtdivisioncan be supported in some Nash
equilibrium. To see this, consider the strategies whengepld demands € (0, ) in the first period, then
7 in each subsequent period where he gets to make an offer)wagsarejects all offers. This is a valid
strategy for the bargaining game. Given this strategy,qyl&ydoes strictly better by acceptingnstead

21The Rubinstein bargaining model is extremely attractivealse it can be easily modified, adapted, and extended tmusgari
settings. There is significant cottage industry that dossthat. The Muthoo (1999) book gives an excellent overviéthe
most important developments. The discussion that foll@taken almost verbatim from Muthoo’s book. If you are sesiabout
studying bargaining, you should definitely get this bookuiéotruly also tends to use variations of the Rubinstein riodeis
own work on intrawar negotiations.

22| the finite-horizon game we formalized the offers as theeshaach player offers to the other. Either way works, ore jus
has to be consistent. The present setup is the most commarsedén the literature.
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of rejecting forever, so she accepts the initial offer arjdats all subsequent offers. Given that 2 accepts
the offer, player 1's strategy is optimal.

The problem, of course, is that Nash equilibrium requirestagies to be mutually best responses only
along the equilibrium path. It is just not reasonable to sggpthat player 1 can credibly commit to
rejecting all offers regardless of what player 2 does. Totki&e suppose at some time> 0, player 2
offersy < = to player 1. According to the Nash equilibrium strategyyplal would reject this (and all
subsequent offers) which yields a payoff of 0. But player i da strictly better by accepting — y > 0.

The Nash equilibrium is not subgame perfect because plaganiot credibly threaten to reject all offers.

5.3 The Unigue Subgame Perfect Equilibrium

Since this is an infinite horizon game, we cannot use backimahaction to solve it. However, thinking
back to our finite-horizon alternating-offers bargainiragrge, we should recall that the SPE had two prop-
erties: (1) the offer made in each period was immediatelgpter — this is a consequence of discounting,
which makes any delay unnecessarily costly, and (2) ea&hn woffs the discounted payoff of what the
other player expected to get in the next period. It is redslerta start the analysis by assuming that these
properties might still characterize SPE behavior.

For example, suppose that in some SPE of this game playeyaibavithout agreement until some time
T > 0—that is, there exist equilibrium offers that are rejectétthwertainty. But then subgame perfection
in periodT — 1 requires that one expects an agreement to whatever offecépted inf". This effectively
creates a “last period” with agreement in the game, and sb in1, the proposer could just offer the
other player the discounted equivalent of what that playpeets from agreement ifi, and this would
be accepted. The proposer would be willing to do that anddatia costly delay provided its payoff in
T is not too bad. There is na priori reason to think that the payoff ifi, which is, after all, acceptable
to both in SPE, should be very bad for one of the players. Thigldvthen suggest that the is a mutually
acceptable offer irf’ — 1, so there should be an agreement there instead. This logitdwmravel the
game to the beginning suggesting that perhaps in SPE ital@uthe case that all offers being made in
equilibrium are also accepted. Thus, we shall start by lugpkor SPE with ano-delayproperty: whenever
a player has to make an offer, the equilibrium offer is imragaly accepted by the other player.

If the SPE does have this property, then the game begins kaaldat like the finite horizon version: in
each period the players are only considering whether tgoadise current offer or reject it in order to get
to the next period, where the offer made will be acceptedhérfinite game, the offers with this property
differed across periods because it mattered how far theeayere from the last period of the game: the
closer to the last period, the smaller the minimum that pl&yeould credibly commit to rejecting, and so
the larger the share that player 1 could extfdcBut this game has no last period, so there is no reason
to assume priori that no-delay offers that only have to compensate for a sipgliod delay should be
different across periods. Thus, we shall look for no-delB¥ESvith astationaryproperty: the equilibrium
offers that a player makes are the same in every period what@layer makes an offer.

It is important to realize that at this point | do not claimttBach equilibrium exists—we shall look for
one that has these properties. Also, | do not claim that ibésdexist, it is the unique SPE of the game.
We shall prove this later. The intuition from the finite hatizmodel suggests that perhaps we should look
for SPE with these properties. Moreover, even if you had eenghe finite bargaining game, you could
still reason that since the subgames are structurallyicnthere is n@ priori reason to think that offers
must be non-stationary, and, if this is the case, that tHevald be any reason to delay agreement (because
doing so is costly). So it makes sense to look for an SPE weéhdlproperties.

23Because we assumed tHatwas odd, which meant that player 1 could make the final take-i¢ave-it offer and get the
entirer.
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Let x* denote player 1's equilibrium offer and* denote player 2's equilibrium offer (again, because
of stationarity, there is only one such offer). Consider rsmme arbitrary time at which player 1 has to
make an offer to player 2. From the two properties, it folldhet if 2 rejects the offer, she will then offer
y* in the next period (stationarity), which 1 will accept (ndadg. So, 2's payoff to rejecting 1's offer is
dy*. Subgame perfection requires that 2 reject any offer x < §y* and accept any offer — x > §y*.
From the no delay property, this implies— x* > §y*. However, it cannot be the case that- x* > §y*
because player 1 could increase his payoff by offering sermech thatr — x* > 7 — x > §y*. Hence:

T —x*=68* (1)

Equation 1 states that in equilibrium, player 2 must be fedint between accepting and rejecting player
1's equilibrium offer. By a symmetric argument it followsathin equilibrium, player 1 must be indifferent
between accepting and rejecting player 2’s equilibriuneroff

T —y*=8x* (2)

Equations (1) and (2) have a unigue solution:

T

SR e

which means that there may be at most one SPE satisfying thelag and stationarity properties. The
following proposition specifies this SPE.

PropPoOsSITIONS. The following pair of strategies is a subgame perfect euilm of the alternating-
offers game:

e player 1 always offers* = 7/(1 + §) and always accepts offegs < y*,

e player 2 always offers* = /(1 + §) and always accepts offexs< x*. o

Proof. We show that player 1's strategy as specified in the projposis optimal given player 2's strat-
egy.

Let’s start with player 1's proposal rule. Consider an aabit period: where player 1 has to make an
offer. If he follows the equilibrium strategy, the payoffis. If he deviates and offers < x*, player
2 would accept, leaving player 1 strictly worse off. Therefosuch deviation is not profitable. If he
instead deviates by offering > x*, then player 2 would reject. Since player 2 always rejeath siffers
and never offers more thart, the best that player 1 can hope for in this case is{#@x— y*), §2x*}.
That is, either he accepts player 2’s offer in the next peoiotkjects it to obtain his own offer after that.
(Anything further down the road will be worse because of alistting.) However§?x* < x* and also
8(r—y*) = 8x* < x*, so such deviation is not profitable. Therefore, by the dra-deviation principle,
player 1's proposal rule is optimal given player 2’s strgteg

Consider now player player 1's acceptance rule. At somérarbitimer player 1 must decide how to
respond to an offer made by player 2. From the above argumekhew that player 1's optimal proposal
is to offerx*, which implies that it is optimal to accept an offeif and only if r — y > §x*. Solving this
inequality yieldsy < 7 — §x* and substituting fox* yields y < y*, just as the proposition claims.

This establishes the optimality of player 1's strategy. Bgymmetric argument, we can show the
optimality of player 2's strategy. Given that these streegre mutually best responses at any point in the
game, they constitute a subgame perfect equilibrium. n
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This is good but so far we have only proven that there is a enBBE that satisfies the no delay and
stationarity properties. We have not shown that there amer subgame perfect equilibria in this game.
Let’s do that now.

PrRoOPOSITIONG. The subgame perfect equilibrium described in Propositiois the unique subgame
perfect equilibrium of the alternating-offers game. 0

Proof. This is a sketch of the elegant proof by Shaked and Sutton4{198hich replaces the quite
convoluted proof by Rubinstein (1982).

We begin by noting that any SPE must not admit any delay. Ifgareanent on some deal can be had
at timer > 0 with some strategies fromon, then the same agreement can be had immediately using the
same strategies with= 0 as the starting point. This follows from the fact that all genare structurally
identical, so the subgames all look the same. Since discmuntakes delay costly, this further implies
that the SPE cannot involve any delay.

Suppose that there are multiple SPE that yield differenpfiayto the players, and lai; by player
i's maximum payoff in some SPE ang be playeri’s worst payoff in some SPE. But since the game
is stationary—each even period is exactly the same as anpedadd except with the identities of the
players making offers reversed—it follows that anythingttban be obtained in SPE for one player must
be obtainable in SPE for the other. This implies that= v, = v andv, = v, = v. Thatis, the best
SPE payoffs for the players must be the same, and their wBistfayoffs must be the same as well, with
V>0,

Since distributing the benefit means that whatever one plggims the other player must give up, it
follows that in the SPE that supports playés best payoff,v;, rejection of that offer must involve the
other player—i, getting her worst payoff, ;. Similarly, in the SPE that supports playés worst payoff,

v;, rejection of that offer must involve the other player gether best payoffy_;. But since we have
established that the best and worst payoffs must be the sand@ye know that the SPE involves no delay,
we can write:

v=m —6v
v=m — 4V,
from which we immediately obtain:
_ T
TR T Txs
That is, the best and worst SPE payoffs of the players ardioddnwhich means that there can only be
one SPE of the game. n

We are now in game theory heaven! The rather complicatekidgdoargaining game has a unique SPE
in which agreement is reached immediately. Player 1 offérats = 0 and player 2 immediately accepts
this offer. The shares obtained by player 1 and player 2 inthgue equilibrium are

i " o
= 1—-|-8 and 7 —x* = m,
respectively. Not surprisingly these are the limit of thargs in the finite-horizon game wh&h— oc.

In the unique SPE, the share depends on the discount factqrlayer 1's share is strictly greater than
player 2's share. Thus, while this game does not have thegamd advantage” that accrues to whoever
happens to make an ultimatum demand whose rejection leaus agreement, it still exhibits the “first-
mover” advantage because player 1 is able to extract allumus from what player 2 must forego if she
rejects the initial proposal.

*
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The Rubinstein bargaining model makes an important cartab to the study of negotiations. First,
the stylized representation captures characteristicsast meal-life negotiations: (a) players attempt to
reach an agreement by making offers and counteroffers,l@rzhfgaining imposes costs on both players.

Some people may argue that the infinite horizon assumptiomgkausible because players have finite
lives. However, this involves a misunderstanding of whatitifinite time horizon really represents. Rather
than modeling a reality where bargaining can continue femeit models a reality where players do not
stop bargaining after some exogenously given predefineglltimt. The finite horizon assumption would
have the two players to stop bargaining even though eachdwwefer to continue doing so if agreement
has not been reached. Unless there’s a good explanationcobruahat prevents them from continuing to
bargain—e.g., a deadline—the infinite horizon assumpsosppropriate. (There are other good reasons
to use the assumption and they have to do with the speed witthwlffers can be made. There are some
interesting models that explore the bargaining model irctirgext of deadlines for reaching an agreement.
All this is very neat stuff and you are strongly encourageretul it.)

5.4 Bargaining with Fixed Costs

Osborne and Rubinstein also study an alternative spedificaf the alternating-offers bargaining game
where delay costs are modeled not as time preferences buteas mer-period costs. These models do
not behave nearly as nicely as the one we studied here, antidlre not achieved widespread use in the
literature.

As before, there are two players who bargain using the @tiegp-offers protocol with time periods
indexed byt, (r = 0,1,2,...). Instead of discounting future payoffs, they pay per-pgkgosts of delay,
¢z > ¢1 > 0. Thatis, if agreement is reached at timen (x, = — x), then player’s payoff isx — ¢ and
player 2’'s payoff ist — x — tc5.

Let’s look for a stationary no-delay SPE as before. Considperiodz in which player 1 makes a
proposal. If player 2 rejects, then she can obtgin- (r + 1)c, by our assumptions. If he accepts, on
the other hand, she gets— x — t¢, because of the period delay. Hence, player 2 will accept any
T—x—tcy > y*—(t+ 1)cp,0rm —x > y* —c,. To find now the maximum she can expect to demand,
note that by rejecting her offer in+ 1, player 1 will getx* — (¢ + 2)c; and by accepting it, he will get
7 —y — (t + 1)c; because of the + 1 period delay up to his acceptance. Therefore, he will acaept
7—y—(t+1)cy > x*—(t +2)cq1, which reduces ta — y > x* —¢;. Since player 2 will be demanding
the most that player 1 will accept, it follows that = = — x* + ¢;. This now means that player 2 cannot
credibly commit to reject any period offer that satisfies:

T—x>m—x"4c1—cr & x —x>c1—ca.

Observe now that sincg < ¢, it follows that the RHS of the second inequality is negati&ippose
now thatx* < 7, then it is always possible to find> x* such thad > x* — x > ¢; — ¢,. For instance,
takingx = x* — (c1 — ¢2) = x* + (c2 — ¢1) > x* because, > c;. Therefore, ifx* < 7, it is possible
to find x > x* such that player 1 will prefer to proposenstead ofx*, which contradicts the stationarity
assumption. Therefore,* = 7. This now pins downy* = ¢;. This yields the following result.

PrRopPOSITION7. The following pair of strategies constitutes the uniquedistery no-delay subgame
perfect equilibrium in the alternating-offers bargainiggme with per-period costs of delay > ¢y > 0:

e player 1 always offers* = = and always accepts offers< ¢q;
e player 2 always offers* = ¢; and always accepts offers< 7.

The SPE outcome is that player 1 grabs the entire pie in thepesod. 0
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Obviously, ifc; > ¢ > 0 instead, then player 1 will get in the first period and the rest will go to
player 2. In other words, the player with the lower cost ofagiedxtracts the entire bargaining surplus,
which in this case is heavily asymmetric. If the low-costyglagets to make the first offer, he will obtain
the entire pie. It turns out that this SPE is also the unique @R, = c», then there can be multiple SPE,
including some with delay).

This model is not well-behaved in the following sense. Finstmatter how small the cost discrepancy
is, the player with the lower cost gets everything. Thattispuld be that player 1's costi§ = ¢; — e,
wheree > 0 is arbitrarily small. Still, in the unique SPE, he obtaine #ntire pie. The solution is totally
insensitive to the cardinal difference in the costs, onlthr ordinal ranking. Note now that if the costs
are very close to each other and we tweak them ever so slightly thatc; > ¢», then player 2 will get
T —cp; i.e., the prediction is totally reversed! This is not sonigg you want in your models. It is perhaps
for this reason that the fixed-cost bargaining model hasaoid wide acceptance as a workhorse model.

6 Legislative Bargaining

Consider now the multilateral legislative bargaining gateeeloped by Baron and Ferejohn (1989). There
aren > 2 players (withn odd), who have to decide by simple majority how to distribaiteenefit of size

1. Players interact in discrete time periods indexed bwith t = 0,1,2,... over an infinite horizon.

In each period, one of the players is randomly chosen to mgk®@osal, which takes the form =
(x1,x2,...,n,), Wherex; > 0 is the share the proposer offers playeavith the property thap ; x; = 1.

If ”42“1 of the players agree to the proposal, it is adopted and the gamis. Otherwise, no agreement is
reached in the current period and the game advances to th@enod, where a new proposer is chosen

randomly.

6.1 Closed-Rule

We shall first consider closed-rule bargaining, which aidar no amendments to the proposal; that is,
the offer merely receives an up or down vote.

Unlike the 2-player game, this one has multiple SPE. Howesiace all the players are identical, it
makes sense to look falymmetricSPE—that is, equilibria where all players use the sameeglyaSince
players are randomly selected to make offers, in expeatatich subgame that starts a period looks exactly
the same as any other such game. This suggests that it malsestedook forstationary SPE—that is,
equilibria where every time a player is chosen, he makesaime proposal. Finally, since delay is costly,
it also makes sense that if an agreement can be had, therstimriel beno delayin reaching it. Let us
find SPE with these three properties.

Since players are symmetric and the subgames are striicideattical, they must all receive the same
payoffs in the continuation game following rejection. Letlenote this, yet unknown, SPE payoff that
each player expects to get if a proposal is rejected. Anyeplayould then agree to an offat > dv.
Since the proposer wants to keep as much of the benefit forelims possible, he will (a) select the
smallest winning coalition of’;—1 players (the proposer will vote for his own proposal), (fepbnly
év to members of this coalition (who will accept in equilibriynand (c) offer nothing to the remaining
players. In SPE, the proposal will be immediately adopted thie game will end. The share that the
proposer gets to keep for himself is:

(n—1)dv

—

We now need to figure out the continuation value. To maintgimnsetry, let the proposer randomly choose
the members of the winning coalition. This means that eatcheofemaining: — 1 players had /> chance

y=1-
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of being selected to be in4t. We can now calculate the expected value of rejecting an.dffiethe next
period, any playef has al}, chance of being selected to be the proposer, in which casdlfgetvy, and,
conditional omot being the proposer, & chance of being in the winning coalition, in which case hé wil
getv, and ali chance of being completely left out, in which case he will @etPutting it all together
yields the expected payoff at the beginning of the next perio

(1 1 1 1 Yy (m=1dv
o= (3)r+ (1-2)[(G) v+ (3) 0] =+ 17

Using the value of we found above, this now yields:

V= —.
n
In other words, in the symmetric SPE, where all players mage lthe same expectations, the continuation
value for each player is just his expected share of the bembéh all shares are the same. This, in turn,
allows us to calculate the share of the benefit that the peyets to keep for himself:

§(n— 1)

ym=1-—0

Consistent with the results from the Rubinstein bargaimmgglel, there is a “first-mover” advantage here
as well: the proposer’s share exceeds the expected shattes members of the winning coalition. This
advantagealecreasess players become more patient. In the limit,

. n+1 1
- (59 (2)

that is, his share is whatever remains after distributirgetkpected shared;, to half of the players. Not
surprisingly, as players become more patient, the propuoset offer a better deal to induce the members
of the winning coalition to not reject the offer in order ftwetchance of becoming proposers themselves.
What happens as the number of playersgoes up? As one might expect, each player’s equilibrium
expected sharel,, decreases. Does this mean that the proposer gets to exibae? No, it does not
because there is a stronger countervailing effect: withengbayers, the proposer has to form a larger
minimum winning coalition. To see this, note that
dy 8
an = 2 < 0.
In other words, even though the proposer does pay less toneactber of the winning coalition, the fact
that he has to pay more players diminishes his share. Inrttig li
-6

. 2
nll—r>nooy(n) o T’

which is clearly bounded away from 0 (even with infinitelyipat players the proposer will extradt of

the benefit). This in itself is intriguing becauseras> oo, the individual expected sharel,, collapse

to 0. Thus, while in absolute terms the proposer’s share dee®ase as the number of players increases,
in relative terms his position is almost infinitely betten fact, this does not just obtain in the limit. If

24However many minimal winning coalitions can be formed, aher¢ are,—;C,—1 of them, since each such coalition

2
includes half of the remaining players, each such playett tmeisn exactly half of these coalitions. In other words, epletyer
has alk chance of being selected as a member of some coalition.
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we conceptualize theelative poweras the ratio of the shares of the proposer to that of a membbeof
winning coalition,y : 1/, = yn, we obtain:
dyn 8

—=1—-—=>0.
dn 2

Thus, relative power increases in the number of playersusecthere are just so many more ways to form
winning coalitions.

We conclude that under closed-rule bargaining, the prapuse tremendous advantages even relative
to whoever ends up in the winning coalition that forms to ghssproposal. Half of the legislature is left
in the cold with absolutely zero shares of the benefit. As i af the legislature increases, the relative
power of the proposer increases as well even though he hadg@udt ever larger shares of the benefit to
the members of the coalition that he forms—these individo@mbers get ever smaller personal shares.

6.2 Open-Rule

One objection to the stark results we obtained under clogiedbargaining is that individual players are
forced to accept minimal shares of the benefit because imjexttthe proposal is costly: they have to wait
until the next period for the chance of becoming a proposhithvalso entails a risk of ending up outside
of the winning coalition should some else get selected toenth& offer. But what if they did not have
to wait but were instead allowed to offer amendments to tlopgsal? This, of course, is how the U.S.
Congress works. Perhaps this would force the proposer ¢o sffmething more equitable, at least to the
members of the winning coalition?

To introduce amendments in the model, let's modify its gtieec as follows. The game starts with a
randomly selected proposer who, as before, offets (x1, x2, ..., n,) to the other players. This becomes
the current proposaland the first period begins. The periods are all identicaé af the remaining — 1
is randomly selected to propose an amendment to the cumgmbgal. The amender can either second the
current proposal, in which case it is submitted to an up orrdowvajority vote, or propose an amendment
x" = (x],x5,...,x;), in which case it is pitted againstin a majority vote. The offer that wins becomes
the current proposal, and the game advances to the nextipetiere a new amender is randomly chosen
from then — 1 players that excludes the player who was the amender in theopis period. The game
continues in this way until some current proposal is secoiyean amender and adopted by a majority.

A few clarifications are in order. First, note that any plaggcept the last amender (or, in the first
period, except the initial proposer) can be selected toge®e@ new amendment irrespective of whether
that player is a member of the coalition that is receivingitb@sshares. This means that when players
consider winning coalitions, they have to account for the fhat if they leave players out in the cold,
there is a positive probability that one of them will be stdelcto be an amender in the same period. Such
a player would not second the existing proposal (since tlmatldvgive him nothing) but would instead
propose an amendment for a vote. Second, the amendmentasswhed to be somehow related to the
current proposal—anything can be offered—although, ashaé see, in practice it will depend almost
entirely on it (after all, the amendment must prevail agaihe current proposal, which means it would
have to satisfy all but one members—the previous amendethabtoalition).

This game is quite a bit more complex than the closed-rulentr As before, we shall look fagym-
metric stationarySPE. It should be immediately clear that the initial propasa no longer safely exclude
players from the winning coalition: doing so entails a riskttone of the excluded player would be se-
lected to propose an amendment. This suggests we coulddooké of two types of SPE: an equilibrium
where the proposal is guaranteed acceptance, and one \whezdd a positive risk of it being rejected.

GUARANTEED ACCEPTANCE The only way to guarantee that a proposal is adopted is torertkat
whoever is selected as an amender would second it (expeabtih@ majority would pass it). This means
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that all players must be in the winning coalition (receivipgsitive shares of the benefit). Since we are
looking for symmetric SPE, each of the remaining playerstraxgect the same continuation payoff if the
proposal is not seconded: This implies that the proposer must offer each of thesegpay, so he must
keep for himself

y=1—(n—1)év.

Since we are looking for SPE without delay, if this share seated in equilibrium, then it cannot exceed
the continuation payoff of any of the other players. Theoeds that if it did, any player who is selected
as amender would not second the current proposal but wostdad propose an amendment that gives
him that payoff. Thus, it must be that= y. From this, we can conclude that the initial offer will aléde

1

Y = =

to the proposer andly to all remaining players. Whoever gets selected as amenitlesesond the pro-
posal, and it will be unanimously adopted.

How does this compare to the closed-rule proposal? Thet#l sfirst-mover advantage that is decreas-
ing in the discount factor: the proposer geta/hile everyone else gety. There are, however, important
differences when it comes to the magnitude of that advargaddhe size of the winning coalition. Unlike
the closed-rule setting, which allows the proposer to canstr minimal winning coalition that excludes
half of the players while still ensuring acceptance, opgda-forces a much more equitable distribution of
the benefit as no player can be excluded when acceptance mgsabanteed. This forces the proposer
to allocate a much smaller share for himself. To see thidractthe open-rule share from the closed rule
share to obtain:

d(n—1) 1

2n 1+6(n—1) g

where the second inequality obtains because 1 and2 — § > 1 — §. The inability to play the members
of a minimal winning coalition against the others forcesghaposer to construct a coalition of all players,
which entails smaller shares both for players who would lmaen in the minimal winning coalition under
closed-rule, and for the proposer himself. In fact, as papecome arbitrarily patient, the proposer retains
no power whatsoever under open-rule:

1 0 & Q2=8n>1-23,

. 1
lim y(n) = —;
§—1 n

that is, each player is going to get the exact same share diethefit in the proposal that gets seconded
and adopted by a unanimous vote. Recall that with close-aully half of the players will gel), each in
that case, with the proposer keeping the rest to himself.

PossIBLE REJECTION So now we have two extreme outcomes: the proposer is eikoeledingly
powerful (closed-rule) or basicalfyrimus inter paregopen-rule with guaranteed acceptance). What about
some intermediate solution, in which he engages in a riskidrade-off, trading some risk of having his
proposal rejected with a successful amendment for some gatrhappens to pass? In this scenario, the
proposer would construct a winning coalition from a subdehe remaining players and only distribute
the benefit among them (and himself). If any member of thdtttais selected to be the amender, he will
second the proposal and it will pass since the coalition lvdille the majority. If, however, a non-member
is selected, then he would propose an amendment. For thaidaneat to make sense in equilibrium, it
would have to beat the current proposal, which means it \ailiehto satisfy a majority of players. Since
the winning coalition under the current proposal has a nitgjat least some of its members would have
to be induced to vote for the amendment. To continue with tten of symmetry, let us look for an
SPE in whichall members of that coalition except the proposer are inducetigport the amendment.
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One simple way to accomplish this is to keep the original psap's share (and giving him nothing) while
offering the exact same distribution as the current prdpmsthe remaining members of the coalition.
Since they are indifferent, they can vote for the amendnsemt,of course the amender will vote for it as
well, and so it will pass.

The logic is straightforward, but the solution is a bit tyckince the continuation values are harder to
derive. There are, in fact, three continuation values n@pedding on whether the player is a proposer,
v(y), or amember of the winning coalition, or whether he is cutyeexcluded from the winning coalition,
v(0). Since we are using a simple coalition building strategy timy replaces the last proposer with the
current amender, lét > (n 4 1)/2 be the size of the winning coalition (it must command a majjri

The current proposal will be seconded and adopted if a meoflibis coalition happens to be selected
as amender, for which the probability(ls— 1) /(n—1). If, on the other hand, a non-member is selected, he
will offer an amendment that will beat the current proposal the game will move on to the next period,
where the previous proposer is among the excluded playdrss, The continuation value of a proposer
who wants share for himself is:

k—1 —k
o) = (=1)+ (A=) wvo ©

The continuation value of a currently excluded player ddseam whether he is selected to be an amender,
for which the probability isl/;,—1. In this case, he will propose a successful amendment thiamnake

him the current proposer, so he will obtadin(y). If he is not selected, his payoff is 0 either because the
current proposal gets seconded and adopted (if a membee @btlition is selected to be the amender)
or because there is a successful amendment but he is sfilidexcfrom the resulting coalition (under
the simple replacement coalition-building strategy artyeotexcluded player will just keep the existing
coalition and include himself in it while tossing out the i@nt proposer). Thus, the continuation value for
an excluded player is simply:

Sv(y) @)
n—1

Consider now a member of the winning coalition. Since thepser allocate$ — y to thek — 1 members,

by symmetry each of them will obtaii — y)/(k — 1). In order to be induced to second the proposal and
vote for it, this must be at least as good as a member’s cattoruvalue. (In equilibrium, of course, they
will be indifferent.) But since each member who gets selbeiean amender can immediately propose an
amendment that would give him the share of the current pep@ithough he would have to wait until
the next period), it must be the case that his expected a@iton value i$v(y). Thus, we conclude that

in this SPE,

v(0) =

-y
r—1_ Sv(y). 5)
Equations (3), (4), and (5) produce a system of equations thite unknownsy, v(y), andv(0). The

solution is:

(=12 -8 —k) Ck=D-1) Cstk—1)
RTINS and v) =" M rO=%0%

where
tmk)y=m—12+8n—1)k—-1)2%—-82(n—k)>0.

This characterizes an SPE for any winning coalition of ¢izéut we can do a bit better and ask what
the optimal size of that coalition should be. To find this, vem ¢ind k that maximizes the proposer’s
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continuation valuey(y). Ignoring for the moment that must constitute a majority and that it must be an
integer, we calculat@% = ( to obtain the first-order condition:

n—1—3§2
8 b

n—1-—24§2
k*=1 _
VT

We must now ensure that the coalition includes at least alsimpjority:

(k—1)? =

so the solution is:

n+1

k* > ,
- 2

which is satisfied for any € (0, §), where

Vin—1D4+64(n—1)— (n—1)2 -
8

In other words, with sufficiently patient playeré,> §, the optimal coalition size will not constitute a
majority. Since the proposer’s payoff is decreasing as tiadition gets further from the optimal size, he
will select the closest coalition size that satisfies thestamt—the simple majority. In other words, with
sufficiently patient players, the optimal winning coalitics the simple majority. Using = (n + 1)/2,
yields the equilibrium payoff for the proposer:

§ = 1.

2(n—1)
n—=1)+80 +n(n—2)) —282

v(y) = 1

Unlike the two scenarios we considered previously, whesgtposer’s payoff is just his offey, (which
is immediately accepted), here we must take into accountikekhood of rejection (with a simple-
majority coalition it is 1), and so we use(y) for the comparisons. The proposer will be willing to
take the risk with a simple-majority coalition over consting a proposal with unanimous support if, and
only if,
2(n —1) 1
D) +8(1ltnn—2)—282 1+48(—-1)

or if

V=115 +n3+nn—3))—nn-2)—1
4

Thus, if§ > max(g, §'), then the risk-return trade-off is worth it to the propos@therwise, he will make
sure the proposal attracts unanimous support. Moreoves si

§ > =5 € (0,1).

dé 0 d § 0
dn = an dn =
for n > 3, it follows that as the number of players increases, themmim discount factor necessary to
rationalize the risk-return trade-off decreases. WitHisiehtly many players the discount factor bounds
become irrelevant:
lim § = lim § =0,

n—oo n—oo

which means that the risk-return trade-offalsvayspreferable to a coalition of all players.
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The intuition behind these results is relatively straightfard. As players become more patient, buying
the support of all potential amenders in order to ensuredlseane of the proposal gets exceedingly costly.
The proposer is better off switching to a risky strategy thats the support only of a bare majority. If the
bet succeeds, the proposer ends up with a much larger shiaigit tfails, he obtains much less.

Substantively, we should expect open-rule legislativeg&iaing to involve either proposals that pass
with very large majorities (in our case, unanimity), or ppegls that cater to a small winning coalition (in
our case, a simple majority) but that run the risk of failingusing amendments with costly delays. Notice
that in the risk-return SPE, the game can continue indefjnéiace in each period there’s a 50-50 chance
of the current proposal being amended, resulting in no ageaeand a loss of surplus due to discounting.
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A Appendix: Strictly Competitive Games

This is a special class of games that is not studied any mameuahk as it used to be. Nevertheless, it is
important to know about them because they invahiaimaxsolutions (these were, in fact, derived before
Nash equilibrium), and because the idea of minimaxing pdaydh an important role in Folk Theorems.

A strictly competitive game is a two-player game where play@ve strictly opposed rankings over the
outcomes. A good example isMMCHING PENNIES. That is, when comparing various strategy profiles,
whenever one player’'s payoff increases, the other plapaty®ff decreases. Thus, there is no room for
coordination or compromise. More formally,

DEFINITION 5. Atwo-player strictly competitive gameis a two-player game with the property that, for
every two strategy profiles, s’ € S,

u1(s) > ur(s') & uz(s) < ua(s).

A special case of strictly competitive games are the zens-games where the sum of the two players’
payoffs is zero (e.g. MTCHING PENNIES).

Player 2

L R

U |32|04

Player 1 pl6il13

Figure 9: A Strictly Competitive Game.

Consider the (non-zero-sum) strictly competitive gameidn & (p. 41). What is the worst-case scenario
that player 1 could ever face? This is the case where playbBo@sesR, which yields a smaller payoff to
player 1 whether he choosésor D (he getd < 3 if he choosed/ and1 < 6 if he choosed).

More generally, thevorstpayoff that playei can get when he plays the (possibly mixed) strategis
defined by

w;(0;) = min u; (s, 55).
s; €S

This means that we look at all strategies available to plagyterfind the one that gives playéthe smallest
possible payoff if he plays;. In other words, if player choosess;, he is guaranteed to receive a payoff
of at leastw; (¢;). This is the smallest payoff that player 2 can hold player given player 1's strategy.
A minimax strategy gives playérthe best of the worst. That is, it solves gaxs; w; (0;):

DEFINITION 6. A strategys; € X; for playeri is called aminimax (security) strategy if it solves the
expression

max min u;(o;, s;),

O’[GE,'SJ‘GSJ' l( ! j)

which also represents playgs minimax (security) payoff.

Returning to our example in Fig. 9 (p. 41), player 1's mininsévategy isD because given that player
2 is minimizing player 1's payoff by playing, player 1 can maximize it by choosing (becausd > 0).
Similarly, player 1 can hold player 2 to at most 3 by playibgto which player 2’s best responseRs

This example is easy to understand, but it might be mislegitirseveral ways. First, the players use
pure strategies in minmaxing. Second, both players arenmaixed in the same strategy profild), R).
Third, the minimax profile is a Nash equilibrium.
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Consider the issue of players using pure strategies to raiitme opponent. Computing the minimax
payoffs in the game from Fig. 9 (p. 41) is easy because eagkias a pure strategy that yields the other
player lower payoffs no matter what the other player doess Wil not be true in general, and it might
be necessary for players to mix in order to impose the lowessiple payoff on the opponent. If we look
at MATCHING PENNIES, for instance, we note that; (H) = —1 whens, = T, andw;(T) = —1 when
so = H. Onthe other hand (1) = 0, so player 1's minimax strategy is to mix between his twocandi
with equal probability. A symmetric argument establishes same result for the other player.

As it so happens, the minimax strategies in bfth R) in the game from Fig. 9 (p. 41) and/z, 1/2)
in MATCHING PENNIES are Nash equilibria. You might wonder whether this will a@wade the case.
There is no general relationship between minimax strasegyiel equilibrium strategies except for strictly
competitive games, for which the two yield the same soligtion

PROPOSITIONS. If a strictly competitive game has a Nash equilibrium;", 0}'), theno is a minimax
(security) strategy for player 1 and}' is a security strategy for player 2. 0

In general, the minimax strategies have no relationshipash\equilibria, and the strategy profiles that
minimax one player are not the strategy profiles that minien@other. To illustrate both claims, consider
the game in Fig. 10 (p. 42).

Player 2

L R
Ull1,1]0,2

Player 1 D 00135

Figure 10: A Game for Minimax lllustration.

This game has a unique Nash equilibriufi2, R). Since player 2 has a strictly dominant stratefy,
player 1 only hold her to the worst of the outcomes that thietegy yields. Therefore, the strategy profile
that minimaxes player 2 i€/, R), where her payoff is 2, and it is not a Nash equilibrium. Miaking
player 1 is more involved. If player 2 chooseswith sufficiently high probability, player 1 would choose
U for sure but his payoff from that is decreasing in the prolitgthwith which she picksk. Since his payoff
from D is increasing in that probability, the worst payoff that she hold him to is where he is indifferent
between the two, which happens when she playsith probability 34. Thus, there is a continuum of
strategy profiles that minimax player {a+, 3/4[L]), heres; € [0, 1] is any strategy for player 1. In all of
these, player 1's expected payoff3¥. None of them are Nash equilibria. This sort of scenario ighmu
more common when we consider arbitrary games.

Since most stage games that we study are not strictly cotmpetihe minimax strategies generally
involve non-Nash play in the stage game, which is why we hag®tthrough all the trouble to ensure that
these sorts of punishments (with players minimaxing dena) are credible. This is done by generally
requiring any player who fails to minimax a deviating one éztime the immediate target of punishment
with the rest coordinating on minimaxing him for his failugepunish the original deviator.
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