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We have already seen an example of a finitely repeated game (recall the multi-stage game where a static
game with multiple equilibria was repeated twice). Generally, we would like to be able to model situations
where players repeatedly interact with each other. In such situations, a player can condition his behavior
at each point in the game on the other players’ past behavior.We have already seen what this possibility
implies in extensive form games (and we have obtained quite afew somewhat surprising results). We now
take a look at a class of games where players repeatedly engage in the same strategic game.

When engaged in a repeated situation, players must considernot only their short-term gains but also
their long-term payoffs. For example, if a Prisoner’s Dilemma is played once, both players will defect.
If, however, it is repeatedly played by the same two players,then maybe possibilities for cooperation will
emerge. The general idea of repeated games is that players may be able to deter another player from
exploiting his short-term advantage by threatening punishment that reduces his long-term payoff.

We shall consider two general classes of repeated games: (a)games with finitely many repetitions, and
(b) games with infinite time horizons. Before we jump into theory, we need to go over several mathematical
preliminaries involving discounting.

1 Preliminaries

Let G D hN; .Ai/; .gi /i be ann-player normal form game. This is the building block of a repeated game
and is the game that is repeated. We shall callG thestage game. This can be any normal form game, like
Prisoner’s Dilemma, Battle of the Sexes, or anything else you might conjure up. As before, assume thatG

is finite: that is it has a finite number of playersi , each with finite action spaceAi , and a corresponding
payoff functiongi W A ! R, whereA D 4Ai .

The repeated game is defined in the following way. First, we must specify the players’ strategy spaces
and payoff functions. The stage game is played at each discrete time periodt D 0; 1; 2; : : : ; T and at the
end of each period, all players observe the realized actions. The game isfinitely repeated if T < 1 and
is infinitely repeated otherwise.

Let at � .at
1; at

2; : : : ; at
n/ be the action profile that is played in periodt (and soat

i is the action chosen
by playeri in that period), and denote the initial history byh0. A history of the repeated game in time
periodt � 1 is denoted byht , and is simply the sequence of realized action profiles from all periods before
t :

ht D
�

a0; a1; a2; : : : ; at�1
�

; for t D 1; 2; : : :

For example, one possible fifth-period history of the repeated Prisoner’s Dilemma (RPD) game ish4 D
..C; C /; .C; D/; .C; C /; .D; D//. Note that because periods begin att D 0, the fifth period is denoted
by h4 because the four periods played are 0, 1, 2, and 3. LetH t D .A/t be the space of all possible
period-t histories. So, for example, the set of all possible period-1histories in the RPD game isH 1 D
f.C; C /; .C; D/; .D; C /; .D; D/g, that is, all the possible outcomes from period 0. Similarly, the set of all
possible period-2 histories is

H 2 D .A/2 D A � A

D f.C; C /; .C; D/; .D; C /; .D; D/g � f.C; C /; .C; D/; .D; C /; .D; D/g

A terminal history in the finitely repeated game is any history of lengthT , whereT < 1 is the number of
periods the game is repeated. A terminal history in the infinitely repeated game is any history of infinite
length. Every nonterminal history begins a subgame in the repeated game.

After any nonterminal history, all playersi 2 N simultaneously choose actionsai 2 Ai . Because
every player observesht , a pure strategy for player i in the repeated game is a sequence of functions,
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si .h
t / W H t ! Ai , that assign possible period-t historiesht 2 H t to actionsai 2 Ai . That is,si .h

t /

denotes an actionai for playeri after historyht . So, a strategy for playeri is just

si D
�

si .h
0/; si .h

1/; : : : ; si .h
T /

�

where it may well be the case thatT D 1. For example, in the RPD game, a strategy may specify

si .h
0/ D C

si .h
t / D

(

C if a�
j D C; j ¤ i; for � D 0; 1; : : : ; t � 1

D otherwise

This strategy will read: “begin by cooperating in the first period, then cooperate as long as the other player
has cooperated in all previous periods, defect otherwise.”(This strategy is called thegrim-trigger strategy
because even one defection triggers a retaliation that lasts forever.)

Denote the set of strategies for playeri by Si and the set of all strategy profiles byS D 4Si . A
mixed (behavior) strategy�i for playeri is a sequence of functions,�i .h

t / W H t ! Ai , that map possible
period-t histories to mixed actions̨i 2 Ai (whereAi is the space of probability distributions overAi ).
It is important to note that a player’s strategy cannot depend on past values of his opponent’s randomizing
probabilities but only on the past values ofa�i . Note again that each period begins a new subgame and
because all players choose actions simultaneously, these are the only proper subgames. This fact will be
useful when testing for subgame perfection.

We now define the players’payoff functions for infinitely repeated games (for finitely repeated games,
the payoffs are usually taken to be the time average of the per-period payoffs). Since the only terminal
histories are the infinite ones and because each period’s payoff is the payoff from the stage game, we
must describe how players evaluate infinite streams of payoffs of the form

�

gi .a
0/; gi .a

1/; : : :
�

. There
are several alternative specifications in the literature but we shall focus on the case where playersdiscount
future utilities using adiscount factor ı 2 .0; 1/. Playeri ’s payoff for the infinite sequence

�

a0; a1; : : :
�

is given by thediscounted sum of per-period payoffs:

ui D gi .a
0/ C ıgi .a

1/ C ı2gi .a
2/ C � � � C ıtgi .a

t/ C � � � D
1

X

tD0

ıtgi .a
t /

For anyı 2 .0; 1/, the constant stream of payoffs.c; c; c; : : :/ yields the discounted sum1

1
X

tD0

ıtc D c

1 � ı

If the player’s preferences are represented by the discounted sum of per-period payoffs, then they are also
represented by thediscounted average of per-period payoffs:

ui D .1 � ı/

1
X

tD0

ıt gi .a
t/:

The normalization factor.1 � ı/ serves to measure the repeated game payoffs and the stage game payoffs
in the same units. In the example with the constant stream of payoffs, the normalized sum will bec, which
is directly comparable to the payoff in a single period.

1It is very easy to derive the formula. First, note that we can factor outc because it’s a constant. Second, let´ D 1 C ı C
ı2 C ı3 C : : : denote the sum of the infinite series. Now,ı´ D ı C ı2 C ı3 C ı4 C : : :, and thereforé � ı´ D 1. But this now
means that́ D 1=.1 � ı/, yielding the formula. Note that we had to use the fact thatı 2 .0; 1/ to make this work.
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To be a little more precise, in the game denoted byG.ı/, playeri ’s payoff function is to maximize the
normalized sum

ui D E� .1 � ı/

1
X

tD0

ıtgi .�.ht //;

where E� denotes the expectation with respect to the distribution over infinite histories generated by the
strategy profile� . For example, sincegi .C; C / D 2, the payoff to perpetual cooperation is given by

ui D .1 � ı/

1
X

tD0

ıt .2/ D .1 � ı/
2

1 � ı
D 2:

This is why averaging makes comparisons easier: the payoff of the overall gameG.ı/ is directly compa-
rable to the payoff from the constituent (stage) gameG because it is expressed in the same units.

To recapitulate the notation,ui , si , and�i denote the payoffs, pure strategies, and mixed strategies for
playeri in the overall game, whilegi , ai , and˛i denote the payoffs, pure strategies, and mixed strategies
in the stage game.

Finally, recall that each history starts a new proper subgame. This means that for any strategy profile�

and historyht , we can compute the players’ expected payoffs from periodt onward. We shall call these
thecontinuation payoffs, and re-normalize so that the continuation payoffs from time t are measured in
time-t units:

ui .� jht / D .1 � ı/

1
X

�Dt

ı��tgi .�.ht //:

With this re-normalization, the continuation payoff of a player who will receive a payoff of 1 per period
from periodt onward is 1 for any periodt .

2 Finitely Repeated Games

These games represent the case of a fixed time horizonT < 1. Repeated games allow players to condition
their actions on the way their opponents behave in previous periods. We begin the one of the most famous
examples, the finitely repeated Prisoner’s Dilemma. The stage game is shown in Fig. 1 (p. 4).

C D
C 10,10 0,13
D 13,0 1,1

Figure 1: The Stage Game: Prisoner’s Dilemma.

Let ı 2 .0; 1/ be the common discount factor, andG.ı; T / represent the repeated game, in which the
Prisoner’s Dilemma stage game is playedT periods. Since we want to examine how the payoffs vary
with different time horizons, we normalize them in units used for the per-period payoffs. The average
discounted payoff is

ui D 1 � ı

1 � ıT C1

T
X

tD0

ıtgi .a
t/:

To see how this works, consider the payoff from both players cooperating for allT periods. The discounted
sum without the normalization is

T
X

tD0

ıt .10/ D 1 � ıT C1

1 � ı
.10/;
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while with the normalization, the average discounted sum issimply 10.
Let’s now find the SPE of the Finitely Repeated Prisoner’s Dilemma (FRPD) game. Since the game

has a finite time horizon, we can apply backward induction. InperiodT , the only Nash equilibrium is
.D; D/, and so both players defect. Since both players will defect in periodT , the only optimal action in
periodT � 1 is to defect as well. Thus, the game unravels from its endpoint, and the only subgame perfect
equilibrium is the strategy profile where each player alwaysdefects. The outcome in every period of the
game is.D; D/, and the payoffs in the FRPD are.1; 1/.

With some more work, it is possible to show that every Nash equilibrium of the FRPD generates the
always defect outcome. To see this, let�� denote some Nash equilibrium. Both players will defect in the
last periodT for any historyhT that has positive probability under�� because doing so increases their
period-T payoff and because there are no future periods in which they might be punished. Since players
will always defect in the last period along the equilibrium path, if playeri conforms to his equilibrium
strategy in periodT � 1, his opponent will defect at timeT , and therefore playeri has no incentive not to
defect inT � 1. An induction argument completes the proof.

In general, note that the subgame that begins in the last period is just a one-shot play of the stage game.
Therefore, any SPE of a finitely repeated game involves playing a Nash equilibrium in the last-period
subgame. However, since each last period subgame is defined uniquely by its history, there are multiple
such subgames. This means that if there are multiple Nash equilibria in the stage-game, then different
Nash equilibria can be played in different last-period subgames. We now state several important results
for finitely repeated games.

Begin by defining strategies that ignore the history of play;that is, strategies that prescribe particular
actions in periodt irrespective of what has happened in the game in periods1; : : : ; t � 1:

DEFINITION 1. A strategy profile� isnon-contingentif it specifies that in each periodt the players choose
a (possibly period-specific) action profileat 2 4A regardless of the historyht .

The first result is intuitive: if a non-contingent strategy profile specifies playing Nash equilibria of the
stage game in every period, then it must be subgame perfect.

PROPOSITION1. SupposeT < 1. If � is a non-contingent strategy profile such that�.ht / is a stage-
game Nash equilibrium for allt D 1; : : : ; T , then� is SPE in the repeated game. ✷

Proof. Suppose that a non-contingent Nash equilibrium is played inevery period-t subgame fort � T ,
and consider periodt � 1. Since a stage-game Nash equilibrium is played int � 1, no player has an
incentive to deviate to increase their payoff for this period. Since the strategies are non-contingent, no
player can affect subsequent behavior in periodst; : : : ; T by deviating in periodt � 1, so no player has
an incentive to deviate int � 1 to increase later payoffs. In the last periodT , the strategies form a Nash
equilibrium in the subgame. Inducting ont establishes the claim. �

The second result is that if the stage game has a unique Nash equilibrium, then there is a unique SPE in
the repeated game (even if one considers contingent strategies).

PROPOSITION2. SupposeT < 1. If a� is the unique Nash equilibrium in the stage game, then the
unique SPE in the repeated game is the non-contingent strategy profile�� such that��.ht / D a� for all
ht 2 H . ✷

Proof. In any SPE,a� must be played in periodT regardless of the history. Consider periodt D T � 1.
No player can affect the future payoffs, which are fixed bya� irrespective of his actions, so there are no
dynamic incentives to deviate. Players must therefore be choosing myopic best-responses, which means
they must be playing a stage-game Nash equilibrium. But since a� is unique, they must play it. Induction
on t establishes the claim. �
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The intuition here is that non-contingent strategies make it impossible to condition future behavior on
current actions, and as a result force myopic best responsesin each period (Proposition 1). Moreover,
if the future is set irrespective of one’s actions today, then there is no way to support any non-myopic
behavior either (Proposition 2). Only when there are multiple Nash equilibria of the stage game can we
obtain interesting contingent behavior in the repeated game.

Consider the augmented Prisoner’s Dilemma game specified inFig. 2 (p. 6).

C X D
C 10,10 2,8 0,13
X 8, 2 5,5 0,0
D 13,0 0,0 1,1

Figure 2: The Stage Game: Augmented Prisoner’s Dilemma.

The stage game has two PSNE:hX; Xi andhD; Di, which means there are many non-contingent SPE,
including the one with perpetual defection. However, thereexists an SPE that can support the cooperative
outcome in all periods but the last. To see this, consider thefollowing pre-strategy strategy profiles:

si .h
0/ D C

si .h
t / D

(

C if a� D hC; C i for � D 0; 1; : : : ; t � 1

D otherwise

si .h
T / D

(

X if a� D hC; C i for � D 0; 1; : : : ; T � 1

D otherwise:

That is, the strategy begins by cooperating, and continues to do so in each period until the last provided
that mutual cooperation was the outcome in the preceding period. If mutual cooperation persisted until
T , then the last period reward is coordination on thehX; Xi Nash equilibrium, which both players prefer
to hD; Di (which is the punishment if cooperation has failed at any point). Note that as soon as a single
player defects in any periodt < T , both players expect a reversion to the non-contingent profile with
mutual defection for the remainder of the game.

Let us check whethers is SPE. Consider periodT � 1, where players are supposed to playhC; C i, in
which their equilibrium payoff is10 C ı.5/. Since any deviation has the same consequence in the future,
we shall consider the most profitable myopic deviation: toD. If player 1 deviates toD, he will get a
payoff of13 C ı.1/. This will not be profitable as long ası > 3=4 � ı.

Assume now thatı > 3=4 and considerT � 2. Sticking to the equilibrium profile yields the payoff
10 C ı.10 C ı.5// D 10 C 10ı C 5ı2. The best possible deviation is toD in the current period, which
results inD in all subsequent periods, yielding a payoff13 C ı.1 C ı.1// D 13 C ı C ı2. This deviation

would not be profitable is9ı C 4ı2 > 3, or if ı >
p

129�9
8

� 0:2947. Sinceı > ı > 0:2947, this
requirement is satisfied.

We could continue the process, but we do not have to. Instead,note that while the benefit from the
potential deviation remains the same (C3 in the period in which it occurs), the costs accumulate as the
number of periods with foregone cooperation increases. This means that if defection can be deterred with
the threat to playD in one subsequent period, it can certainly be deterred when the threat becomes more
severe. Even though the reward itself is reduced in the last period, the players care sufficiently about the
future, ı > ı, to deter the deviation in the penultimate period as well. Thus, the augmented PD permits
very long cooperation provided the players do not discount the future too much. Contrast this with the
standard PD, which does not allow for cooperation in the penultimate period to be rewarded, which then
unwinds cooperation throughout the entire game.
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If you understand the logic of how cooperation is sustained in the finitely repeated game, then you will
have no trouble following the ideas for infinitely repeated games. Essentially, in order to sustain non-Nash
play in the stage game, from which a single-period deviationis profitable by definition, players have to
threaten to punish such deviations in the future. In SPE, these threats have to be credible, which means
that players must have incentives to carry them out when the contingencies require them to do so.

With finitely repeated games, any credible punishment must involve playing a Nash equilibrium in the
last stage of the game. Since a threat must involve imposing some costs (in the form of foregone benefits,
for instance), for this to work, there must be more than one Nash equilibrium in the stage game. If that is
not the case, then there is only one expected payoff in the last stage, and so no costs can be imposed there.
But this means that in the penultimate stage there is no way tomake a credible threat to deter a deviation
because the future is “set” to the unique Nash equilibrium play irrespective of what happens in that stage.
This implies that only the Nash equilibrium can be played in the penultimate stage as well, which unravels
the game.

With more than one Nash equilibrium in the stage game, it is possible to create threats as long as
they yield different expected payoffs. The reward for sticking to the non-Nash play in the preceding
period would be playing an equilibrium with the higher payoff, and the punishment for deviating in the
preceding period would then be playing an equilibrium with alower payoff. The difference between these
payoffs determines the maximum credible punishment players can impose for deviations. The larger the
difference, the more costly defection becomes, and the easier is non-Nash play to sustain in the preceding
period (that is, the smallest discount factor that can do this decreases). With grim trigger strategies that
use the Nash equilibrium that punishes the deviating playerthe most, the costs increase with the length of
the punishment, which means that the earlier in the game a player defects, the larger the costs this would
entail. Since the profit from deviation is the same in each period, earlier deviations are easier to deter than
later ones. This is why it is sufficient to establish the discount factor that is necessary to prevent a deviation
in the penultimate stage, where the expected costs are lowest (imposed only once).

Everything seems to hinge, then, on what happens in that verylast period. Theendgame effectis very
powerful in finitely repeated games. But what if players are uncertain when the endgame will come?
Although there are several applications of finitely repeated games, the “unraveling” effect makes them
less suitable for modeling recurrent situations where the endgame is either too distant or too uncertain
to figure in the players’ strategic calculations. For this, we shall turn to infinitely repeated games with
the understanding that “infinitely repeated” is not meant tomean that players literally expected to play
forever—after all, in the long run, we’re all dead—but that the situation does not involve a predictable
endgame around which players can coordinate expectations.

One issue that is unique to infinitely repeated games, and so we have not had to deal with, is that since
they involve infinite strategies, they can also involve infinite deviations. So how can we check whether a
strategy is optimal if there are infinite possibilities for deviations across periods? Fortunately for everyone
involved, there is a very powerful result that tells us that not can we limit ourselves to checks against
strategies with finite numbers of deviations, but that we really only need to consider only strategies that
deviate only once and then return to the supposed optimal play. In fact, this result can also be applied to
finitely repeated games, which means we would not need to consider some arbitrarily long sequences of
deviations when checking for SPE. This result greatly simplifies our task, but since it is not at all intuitive,
let us spend a bit of time to see how and why it works.

3 The One-Shot Deviation Principle (OSDP)

The principle states that to check whether a strategy profileof a multi-stage game with observed actions is
subgame perfect, it suffices to check whether there are any historiesht where some playeri can profit by
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deviating only from the actions prescribed bysi .h
t / and conforming tosi thereafter. In other words, for

games with arbitrarily long (but finite) histories, it suffices to check if some player can profit by deviating
only at a single point in the game and then continuing to play his equilibrium strategy. That is, we do not
have to check deviations that involve actions at several points in the game. As we shall see shortly, this
principle also works for infinitely repeated games under some conditions that will always be met by the
games we consider. You should be able to see how this simplifies matters considerably.

The following theorem is (sometimes also called “The One-Stage Deviation Principle”) is essentially
Bellman’s Principle of Optimality in dynamic programming.Since this is such a nice result and because
it may not be obvious why it holds, we shall go through the proof.

THEOREM 1 (OSDPFOR FINITE HORIZON GAMES). In a finite multi-stage game with observed ac-
tions, strategy profile.s�

i ; s�
�i / is a subgame perfect equilibrium if, and only if, it satisfiesthe condition

that no playeri can gain by deviating froms�
i in a single stage and conforming tos�

i thereafter while all
other players stick tos�

�i . ✷

Proof. (Necessity.) This follows immediately from the definition of SPE. If.s�
i ; s�

�i / is subgame perfect
equilibrium, then no player has an incentive to deviate in any subgame.2

(Sufficiency.) Suppose that.s�
i ; s�

�i / satisfies the one-shot deviation principle but is not subgame perfect.
This means that there is a subgame after some historyh such that there is another strategy,si ¤ s�

i that
is a better response tos�

�i thans�
i is in the subgame starting withh. Let Ot be the largestt such that, for

someht , si .h
t / ¤ s�

i .ht /. (That is,hOt is the history that includes all deviations.) Becauses�
i satisfies the

OSDP,hOt is longer thanh and, because the game is finite,hOt is finite as well. Now consider an alternate
strategyOsi that agrees withsi at all t < Ot and followss�

i from stageOt on. BecauseOsi is the same ass�
i in

the subgame beginning withhOtC1 and the same assi in all subgames witht < Ot , the OSDP implies that it
is as good a response tos�

�i assi in every subgame starting att with historyht . If Ot D t C1, thenOs1 D s�
1 ,

which contradicts the hypothesis thats1 improves ons�
1 . If Ot > t C 1, construct a strategy that agrees

with s1 until t � 2, and argue that it is as good a response ass1, and so on. The sequence of improving
deviations unravels from its endpoint. �

The proof works as follows. You start from the last deviationin a sequence of multiple deviations and
argue that it cannot be profitable by itself, or else the OSDP would be violated. This now means that if
you use the multiple-deviation strategy up to that point andfollow the original OSDP strategy from that
point on, you would get at least as good a payoff (again, because the last deviation could not have been
the profitable one, so the original OSDP strategy will do at least as good in that subgame). You then go
up one step to the new “last” deviation and argue that this deviation cannot be profitable either: since we
are comparing a subgame with this deviation and the originalOSDP strategy to follow with the OSDP
strategy itself, the fact that the original strategy satisfies OSDP implies that this particular deviation cannot
be profitable. Hence, we can replace this deviation with the action from the OSDP strategy too and obtain
at least as good a payoff as the multi-deviation strategy. You repeat this process until you reach the first
stage with a deviation and you reach the contradiction because this deviation cannot be profitable by itself
either. In other words, if a strategy satisfies OSDP, it must be subgame perfect.

An example here may be helpful. Since in equilibrium we hold all other players strategies constant when
we check for profitable deviations, the diagram in Fig. 3 (p. 9) omits the strategies for the other players and
shows only player 1’s moves at his information sets. Realizethat this isnot an extensive-form game, just
a diagram of all of player 1’s information sets (since his strategy must prescribe what to do at all of them)

2This doesnot hold for Nash equilibrium, which may prescribe suboptimal actions off the equilibrium path (i.e. in some
subgames).
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and how they are reachable through his own actions at his information sets. The underlying EFG can be
arbitrarily complex, with multiple other players and lots of other actions in between these information sets.
Label the information sets consecutively with small Roman numerals for ease of exposition. Suppose that
the strategy.adegi/ satisfies OSDP. We want to show that there will be no more profitable other strategies
even if they involve multiple deviations from this one. To make the illustration even more helpful, I have
bolded the actions specified by the OSDP strategy.

ba

i

d

w

c

ii

h

v

g

u

iv

fe

x

iii

j

´

i

y

v

Figure 3: Diagrammatic illustration withs D .adegi/ satisfying OSDP.

Because.adegi/ satisfies OSDP, we can infer certain things about the ordering of the payoffs. For
example, OSDP implies that changing fromg to h at (iv) cannot be profitable, which impliesu � v. Also,
at (v), changing fromi to j cannot be profitable, soy � ´. At (ii), changing toc cannot be profitable;
since the strategy specifies playingg at (iv), this deviation leads tow � u. At (iii), changing tof cannot
be profitable. Since the original strategy specifiesi at (v), this deviation will lead tox � y. Finally, at (i)
changing tob cannot be profitable. Since the original strategy specifiese at (iii), this deviation will lead to
w � x. The implications of OSDP are listed as follows:

at (i) W w � x at (ii) W w � u at (iii) W x � y at (iv) W u � v at (v) W y � ´:

These inequalities now imply that some further relationships among the payoffs must be true: from the
first and the third, we getw � y, and putting this together with the last yieldsw � ´ as well. Furthermore,
from the third and last we obtainx � ´, and from the second and fourth we obtainw � v. Putting
everything together yields the following orderings of the payoffs:

w � x � y � ´ and w � u � v:

We can now check whether there exist any profitable multi-stage deviations. (Obviously, there will be no
single-stage profitable deviations because the strategy satisfies OSDP.) Take, for example, an alternative
strategy that deviates at (ii) and (iv); that is in the subgame starting at (ii), it specifiesch. This will lead to
the outcomev, which cannot improve onw, the outcome from following the original strategy. Consider
another alternative strategy which deviates twice in the subgame starting at (iii); i.e., it prescribesfj ,
which would lead to the outcomé. This cannot improve onx, the outcome the player would get from
following the original strategy. Going up to (i), consider astrategy that deviates at (i) and (v). That is, it
prescribesb andj at these information sets. Since (v) is still never reached,this actually boils down to a
one-shot deviation with the outcomex, which (not surprisingly) cannot improve onw, which is what the
player can get from following the original strategy. What ifhe deviated at (i) and (iii) instead? This would
lead toy, which is also no better thanw. What if he deviated at (i), (iii), and (v)? This would lead to´,
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which is also no better thanw. Since all other deviations that start at (i) leave (ii) and (iv) off the path of
play, there is no need to consider them. This example then shows how OSDP implies subgame-perfection.
Intuitively, if a strategy satisfies OSDP, then it implies a certain preference ordering, which in turn ensures
that no multi-stage deviations will be profitable.

To see how the proof would work here. Take the longest deviation, e.g., a strategy that deviates at
(i), (iii), and (v). Since it leaves (ii) and (iv) off the path, let’s consider.bdfgj / as such a supposedly
better alternative. Observe now that because.adegi/ satisfies OSDP, the deviation toj at (v) cannot be
improving. This means that the strategy.bdfgi/ is at least as good as.bdfgj /. Hence, if.bdfgj / is
better than the original, then.bdfgi/ must also be better. Consider now.bdfgi/: since it matches the
original at (v), OSDP implies that the deviation tof cannot be improving. Hence, the strategy.bdegi/

is at least as good as.bdfgi/, which implies it is also at least as good as.bdfgj /. Hence, if.bdfgj / is
better than the original, then.bdegi/ must also be better. However,.bdegi/ matches the original strategy
at all information sets except (i); i.e., it involves a one-shot deviation tob which cannot be improving by
OSDP. Since.bdegi/ cannot improve on.adegi/, neither can.bdfgj /, a contradiction to the supposition
that it is better than.adegi/.

What is the intuition for this result? Essentially, the possible one-shot last-stage deviation tells you
which of the outcomes reachable from this stage are preferable. At (iv), the OSDP says that player 1 must
not preferv to u. This “pins down” the relevant outcome for comparison at earlier stages: at (ii) the fact
that player 1 does not wish to deviate toc to obtainu means that he cannot preferu to w. Player 1 could
get tov with two deviations, but since we already established that this cannot improve onu, it would
certainly not improve onw either. In other words, the check at (iv) has established themaximumpayoff
that player 1 should expect from this stage on (u), so if an earlier action leads to an outcome that is better
than this maximum (w at stage (ii)), then the player would not want to deviate oncein order to getu, and
sinceu is the maximum he can get at (iv), he would certainly not want to deviate multiple times to get to
v. Thus, we only need to consider the one-shot deviation at (ii).

This is how the proof unravels the deviations to establish the SPE: OSDP at the last potential deviation
establishes the maximum that can be attained in the subgame starting there, and all other payoffs reachable
from that point on are irrelevant for the comparisons that follow. Repeating this process for deviations at
earlier points continues establishing the maximum for eachof the stages until the first stage for that player
is reached.

Let’s now see what OSDP gets you. Consider the game in Fig. 4 (p. 10). The SPE, which you can obtain
by backward induction, is..bf /; d/, with the outcome.3; 3/.

ba

1; 0

1

dc

0; 1

2

f

3; 3

e

2; 2

1

Figure 4: The One-Shot Deviation Principle.

Let’s now check if player 1’s strategy is indeed subgame perfect given player 2’s choice ofd . Recall that
this requires that it is optimal for all subgames. This is easy to see for the subgame that begins with player
1’s second information set that follows history.b; d/. How about player 1’s choice at the first information
set? If we were to examine all possible deviations, we must check the alternative strategies.ae/; .af /, and

10



.be/ because these are the other strategies available for that subgame. The one-shot deviation principle
allows us to check just one thing: whether player 1 can benefitby deviating fromb to a at his first
information set. In this case, deviating toa would get player 1 a payoff of 1 instead of 3, which he would
get if he stuck to his equilibrium strategy. Therefore, thisdeviation is not profitable. We already saw that
deviating toe in the subgame that begins with player 1’s second information set is not profitable either.
Therefore, by the OSDP, the strategy is subgame perfect.

Suppose you did not know that SPE strategy from backward induction and just wanted to see if some
strategy, say.be/, is subgame perfect givend by player 2. If the strategy is followed, player 1’s payoff is
2. If he deviates at his first information set and follows the strategy thereafter,.ae/, his payoff will be 1,
so not an improvement. If he deviates at his first informationset only,.bf /, his payoff will be 3, which is
an improvement. Therefore,.be/ does not satisfy OSDP and cannot be subgame perfect.

What if we started by thinking that player 2’s strategy isc. Consider.bf / for player 1. Deviating at
the second information set,.be/, is not profitable in that subgame. What about deviating to.af / at the
first information set? Doing so yields 1, which is an improvement to.be/, whose payoff is 0. Therefore,
bf does not satisfy OSDP when player 2 is choosingc. What strategy does? Since we know that it has
to involve choosingf at the second information set, we can conclude that.af / satisfies OSDP againstc.
For SPE, however, we must make sure that the strategies for both players satisfy OSDP. If player 2 sticks
with c, her payoff will be 1. If she deviates at her stage tod , her payoff will be 3. Thereforec does not
satisfy OSDP, and the strategy profileh.af /; ci is not SPE. Since the only alternative is player 2 choosing
d , the above result that concluded that.bf / satisfies OSDP againstd yields the original SPE solution.

The one-shot deviation principle holds for infinite horizongames with bounded payoffs (payoffs do not
explode to infinity) as well. Repeated games with discounting satisfy this property because limt!1 ıtgi .a

t / D
0, which means that the infinite sums yield finite numbers. In these games, payoffs that are sufficiently
far in the future become negligible, which means that they cannot affect strategic behavior in the present.
Effectively, this implies that any profit from infinitely many deviations must be obtainable with a finite
number of deviations; that is, it must be accumulated after some finite number of periods. But then we can
apply the logic of Theorem 1 to establish the OSDP for these games as well.

We shall make heavy use of OSDP in the infinitely repeated games that we shall consider next. Even if
OSDP is not helpful in finding SPE, it is extremely useful in verifying whether a strategy profile is one.
In the infinitely repeated games, this will boil down to finding structurally identical subgamesunder a
given strategy profile; that is, subgames that look identical from that point on no matter where you start
them in the game. For example, under thehC; C i, each period begins a structurally identical subgame
that entails mutual cooperation from this point onward forever. Thus, any strategy that specifies this
profile being played forever after certain contingencies will involve the “same” subgame for each of these
contingencies. We will only need to check for a single-period deviation then rather than for all periods
where this profile is being played.

But we are getting ahead of ourselves. Before we can discuss any of this, we need to establish some
preliminary notation and definitions.

4 Infinitely Repeated Games

Games with an infinite time horizonT D 1 are meant to represent situations where players are un-
sure about when precisely the game will end (or, alternatively, any situation in which there is no defined
endgame to condition their strategic behavior). The set of equilibria of an infinitely repeated game can
be very different from that of the “similar” finitely repeated game because players can use self-enforcing
rewards and punishments that do not unravel from a terminal period. We begin with the somewhat trivial
result that non-contingent strategies that specify stage-game Nash equilibrium play produce SPE in the
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infinitely repeated game as well.

PROPOSITION3. SupposeT D 1. If � is a non-contingent strategy profile such that�.ht / is a stage-
game Nash equilibrium for allt D 1; : : : ; T , then� is SPE in the repeated game. ✷

Proof. Consider some arbitrary periodt . Since�.ht / is a stage-game Nash equilibrium, no player has
an incentive to deviate in order to improve their payoff in period t . Moreover, since� is non-contingent,
no deviation will have any effect on future payoffs either. Therefore, no player will deviate in periodt .
Since the subgame that starts in periodt is identical to the entire repeated game, this applies for every
subgame. �

This result tells us that repeated play does not decrease theset of equilibrium payoffs. Also, since the
only reason not to play a static best response (Nash equilibrium of the stage game) is concern about the
future, it follows that if the discount factor is low enough,then the only Nash equilibria of the repeated
game will be the strategies that specify a static equilibrium at every history to which the equilibrium gives
positive probability. Note that the same static equilibrium need not occur in every period. In infinitely
repeated games, the set of Nash equilibrium continuation payoff vectors is the same in every subgame.

4.1 Folk Theorems

There is a set of useful results, known as “folk theorems” forrepeated games, which assert that if players
are sufficiently patient, then anyfeasible, individually rationalpayoffs can be supported by an equilibrium.
Thus, withı close enough to 1, repeated games allow virtually any payoffto be an equilibrium outcome.
To show these results, we need to get through several definitions.

DEFINITION 2. The payoffs.v1; v2; : : : ; vn/ arefeasible in the stage gameG if they are a convex com-
bination of the pure-strategy payoffs inG. The set of feasible payoffs is

V D convex hull
n

v
ˇ
ˇ9a 2 A with g.a/ D v

o

:

In other words, payoffs are feasible if they are a weighted average (the weights are all non-negative
and sum to 1) of the pure-strategy payoffs. For example, the Prisoner’s Dilemma in Fig. 1 (p. 4) has four
pure-strategy payoffs,.10; 10/; .0; 13/; .13; 0/, and.1; 1/. These are all feasible. Other feasible payoffs
include the pairs.v; v/ with v D ˛.1/ C .1 � ˛/.10/, with ˛ 2 .0; 1/, and the pairs.v1; v2/ with
v1 D ˛.0/ C .1 � ˛/.13/ with v1 C v2 D 13, which result from averaging the payoffs.0; 13/ and.13; 0/.
There are many other feasible payoffs that result from averaging more than two pure-strategy payoffs. To
achieve a weighted average of pure-strategy payoffs, the players can use a public randomization device.
To achieve the expected payoffs.6:5; 6:5/, they could flip a fair coin and playhC; Di if it comes up heads
andhD; C i if it comes up tails.3

3They can also achieve these payoffs with independent randomizations. Letx be the probability with which playeri choosesC
(since the players are symmetric, this probability will be the same for both). Then, we require thatxui .C; x/C.1�x/ui .D; x/ D
6:5, which means that:

x D 6:5 � ui .D; x/

ui .C; x/ � ui .D; x/
:

But since�i also playsC with probabilityx, we know thatui .C; x/ D 10x andui .D; x/ D 1 C 12x, which yields

x D 12x � 5:5

2x C 1
;

which is the quadratic2x2 �11x C5:5 D 0 with a discriminant of77. Since the larger root exceeds 1, it is not a valid probability.
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C D
C 10; 10 0; 13

D 13; 0 1; 1

v1

v2

.1; 1/

.0; 13/
.10; 10/

.10; 10/

Figure 5: Convex hull and individually rational payoffs forthe Prisoner’s Dilemma.

The convex hull of a set of points is the smallest convex set containing all the points. The setV is easier
to illustrate with a picture. Consider the Prisoner’s Dilemma from Fig. 1 (p. 4), reproduced in Fig. 5 (p. 13)
along with its convex hull.

In this example, the vertices of the convex hull are just the payoffs from the certain outcomes, and the
polygon they create encloses all feasible payoffs. That is,every pair of payoffs inside that polygon can be
attained with an appropriate randomized strategy profile. For instance, consider the payoff.7; 2/. This can
be attained with mixed strategies.p; q/ that solve the following system of equations:

p
�

.10/q C .0/.1 � q/
�

C .1 � p/
�

13q C .1/.1 � q/
�

D 7

q
�

.10/p C .0/.1 � p/
�

C .1 � q/
�

13p C .1/.1 � p/
�

D 2:

This produces the quadratic26p2 � 133p C 18 D 0, with the discriminantD D 15; 817. Since the larger
root exceeds 1, the solution is at the smaller root:

p D 133 �
p

15; 817

52
≅ 0:1391;

which then yields

q D 12p � 1

2p C 1
≅ 0:5235:

You can verify that this does produce the required payoffs (modulo the rounding error):

U1.p; q/ ≅ .0:1391/.10/.0:5235/ C .0:8609/.0:5235.13/ C 0:4765/ D 6:9972623 ≅ 7:

Let’s now computeV for the stage game shown to the left in Fig. 6 (p. 14). There arethree pure-
strategy payoffs inG, so we only need consider the convex hull of the set of three points, .�2; 2/; .1; �2/,
and.0; 1/, in the two-dimensional space.

The required mixing probability is then

x D 11 �
p

77

4
≅ 0:556:

You can verify that this yields the requisite expected payoffs for the two players. Sometimes the payoff vector cannot beattained
with independent randomizations, and one could use a correlating device. There are folk theorems that do not require this, but
things do get a bit technical without any obvious advantage,so we will not look at these results.
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L R
U �2; 2 1; �2

M 1; �2 �2; 2

D 0; 1 0; 1

v1

v2

.�2; 2/

.1; �2/

.0; 1/

Figure 6: Convex hull and individually rational payoffs forG.

As the plot on the right in Fig. 6 (p. 14) makes it clear, all points contained within the triangle shown
are feasible payoffs (the triangle is the convex hull). How would one obtain some payoffs, say.0; 0/, in
the convex hull? Consider a public randomization that assigns weights̨ 1 to .�2; 2/, ˛2 to .1; �2/, and
˛3 to .0; 1/ with ˛i � 0 and

P

i ˛i D 1. Since these weights must produce the desired payoffs, we set up
a system of equations:

˛1.�2/ C ˛2.1/ C ˛3.0/ D 0

˛1.2/ C ˛2.�2/ C ˛3.1/ D 0:

Solving this system yields̨1 D 1=5, and˛2 D ˛3 D 2=5. (Make sure you can do this.4) Players can use
this device to correlate their actions, which would cause them to playhU; Li (or hM; Ri) with probability
1=5, playhM; Li (or hU; Ri) with probability 2=5, and playhD; Li (or hD; Ri) with probability 2=5 as well.

Consider now a minor modification of the stage game, as shown in the payoff matrix on the left in Fig. 7
(p. 15). In effect, we have added another pure-strategy payoff to the game:.2; 3/. What is the convex hull
of these payoffs? As the plot on the right in Fig. 7 (p. 15) makes it clear, it is (again) the smallest convex
set that contains all points. Note that.0; 1/ is now inside the set. However, if it were a vertex, as indicated
by the dotted lines, then the hull would not be convex: all points in the triangle.�2; 2/, .0; 1/, .1; �2/

would lie outside the set. Recall that a set of points is convex if the linear combination of any two points
is itself inside the set. In this instance, this requires that the linear combinations of.�2; 2/ and.1; �2/

are all inside the set, which gives us the bounding line, which convexifies the hull. All payoffs contained
within the triangle are feasible.

Consider, for instance, the feasible payoff vector.1; 1/. How can these payoffs be attained? Letp �
�1.U /, q � �1.M /, andr � �2.L/. We need:

U1 D p.1 � 3r/ C q.3r � 2/ C 2.1 � q � r/.1 � r/ D 1

U2 D r.1 C p � 3q/ C .1 � r/.3 � 5p � q/ D 1;

4From the first equation we get2a1 D a2, and plugging this into the second equation tells us thata2 D a3. Sincea1 C
a2 C a3 D 1, this tell us thata1 C 2a2 D 1, and the first result tells us thata1 C 2.2a1/ D 1, or a1 D 1=5. The rest follows
immediately.
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L R
U �2; 2 1; �2

M 1; �2 �2; 2

D 0; 1 2; 3

v1

v2

.�2; 2/

.1; �2/

.2; 3/

.0; 1/

2=5

Figure 7: Convex hull and individually rational payoffs forG2.

which yields the solutions

p D 7 � 18r C 14r2

19 � 52r C 28r2
) r � 3

7

q D 3 � 16r C 14r2

19 � 52r C 28r2
) r � 8 �

p
22

14
or

4

7
� r � 8 C

p
22

14
;

where the restrictions onr arise becausep andq must be valid probabilities. The binding condition onr

is, therefore,

r � 8 �
p

22

14
:

There are clearly multiple solutions since the original system is underdetermined, so let’s try a very simple
one that satisfies the above requirement:r D 0, which yieldsp D 7=19 andq D 3=19. You can verify that
the expected payoffs are:

U1.p; qI R/ D 7=19 � 2.3=19/ C 2.9=19/ D 1

U2.p; qI R/ D �2.7=19/ C 2.3=19/ C 3.9=19/ D 1:

As expected, there exists at least one strategy profile that yields the desired payoff. In more complicated
games it might not be possible to attain some payoffs with independent randomizations, in which case
players could use a correlating device.

We now proceed to define what we mean byindividually rational payoffs. To do this, we need to
answer the question: “What can a player guarantee himself inany given game?” That is, what is the
lowest payoff that the other players can possibly hold that player to? You can think of this as the harshest
punishment that the other players can inflict on that player.To compute this, we recall that since the player
would best-respond to any set of strategies for the other players, we must find the maximum that this
player can obtain when he expects the others to play strategies designed to minimize his payoffs. Here’s
the formal definition:

DEFINITION 3. Playeri ’s reservation payoff (or minimax value) is

vi D min
˛�i

h

max
˛i

gi .˛i ; ˛�i /
i

:
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In other words,vi is the lowest payoff that playeri ’s opponents can hold him to by any choice of˛�i

provided that playeri correctly foresees̨ �i and plays a best response to it. Letmi
�i be theminimax

profile against playeri , and letmi
i be a strategy for playeri such thatgi .m

i
i ; mi

�i / D vi . That is, the
strategy profile.mi

i ; mi
�i / yields playeri ’s minimax payoff inG (there could be different strategy profiles

to minimax different players).
Let’s look closely at the definition. Consider the stage gameG illustrated in Fig. 6 (p. 14). To compute

player 1’s minimax value, we first compute the payoffs to his pure strategies as a function of player 2’s
mixing probabilities. Letq be the probability with which player 2 choosesL. Player 1’s payoffs are then
vU .q/ D 1 � 3q, vM .q/ D 3q � 2, andvD.q/ D 0. Since player 1 can always guarantee himself a payoff
of 0 by playingD, the question is whether player 2 can hold him to this payoff by playing some particular
mixture. Sinceq does not entervD , we can pick a value that minimizes the maximum ofvU andvM ,
which occurs at the point where the two expressions are equal, and so�3q C 1 D 3q � 2 ) q D 1=2.
SincevU .1=2/ D vM .1=2/ D �1=2, player 1’s minimax value is 0.5

Finding player 2’s minimax value is a bit more complicated because there are three pure strategies for
player 1 to consider. LetpU andpM denote the probabilities ofU andM respectively. Then, player 2’s
payoffs are

vL.pU ; pM / D 2.pU � pM / C .1 � pU � pM /

vR.pU ; pM / D �2.pU � pM / C .1 � pU � pM /;

and player 2’s minimax payoff may be obtained by solving

min
pU ;pM

max
�

vL.pU ; pM /; vR.pU ; pM /
�

:

By inspection we see that player 2’s minimax payoff is 0, which is attained by the profile
�

1
2
; 1

2
; 0

�

. Unlike
the case with player 1, the minimax profile here is uniquely determined: IfpU > pM , the payoff toL is
positive, ifpM > pU , the payoff toR is positive, and ifpU D pM < 1

2
, then bothL andR have positive

payoffs. We conclude that in the gameG, the minimax payoffs are.0; 0/.
Consider now the gameG2 illustrated in Fig. 7 (p. 15). Letq be the probability with which player 2

choosesL. Player 1’s payoffs are thenvU .q/ D 1 � 3q, vM .q/ D 3q � 2, andvD.q/ D 2 � 2q. Since
vD.q/ > vU .q/, that is, strategyU is strictly dominated byD, we can ignoreU in our calculations:
player 1 would only choose betweenM andD when player 2 is trying to minimize his payoffs. Setting
vM .q/ D vD.q/ and solving yieldsq D 4=5. For anyq > 4=5 player one would chooseM , and for any
q < 4=5 he would chooseD. Thus, the minimum to which player 2 can hold him occurs atq D 4=5, where
his payoff is2=5. This is player 1’s minimax payoff inG2.

Turning now to player 2’s minimax payoff, observe that player 1 would never chooseD when attempting
to minimize her payoffs because choosingM is preferable in that regard irrespective of what player 2 does.
It is then clear that with the remaining strategiesU andM , player 1 can hold player 2 to a payoff of 0 if
he randomizes between them with equal probability. Thus, player 2’s minimax payoff inG2 is zero. We
conclude that in the gameG2, the minimax payoffs are.2=5; 0/.

It is important to realize thatminimax strategies— strategies where players try to minimize the payoff
of another player, who in turn does the best possible under the circumstances — are generallynot a Nash
equilibrium even though the targeted player is best-responding. This is so because it might not be optimal
for the other players to choose the strategies that minimizethat player’s payoff given his response. The
only exception where the two coincide are strictly competitive (zero-sum) games.6 In these games, a gain

5Note that max.vU .q/; vM .q// � 0 for any q 2 Œ1=3; 2=3�, so we can take anyq in that range to be player 2’s minimax
strategy against player 1.

6A very brief overview is provided in Appendix A.
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for any one player is an automatic loss for everyone else, which means that players have incentives to
minimize each other’s payoffs. Selecting the best responses from the set of strategies that minimize the
opponents’ payoffs results in a Nash equilibrium in minimaxstrategies. The solution concept involving
minimaxing strategies was developed by von Neumann and Morgenstern before Nash equilibrium as the
solution to strictly competitive games. Of course, it is of very limited applicability since most interesting
games are not strictly competitive.

For our purposes, you need to remember that (i) the strategies that minimax any given player do not
have to be, and generally will not be, a Nash equilibrium, (ii) different players are generally minimaxed in
different strategy profiles, and (iii) the minimaxing strategy profiles do not have to be in pure strategies.
The Prisoner’s Dilemma is especially misleading as an example because it is not a strictly competitive
game, yet the solution is in minimax strategies, which do form a Nash equilibrium, with both players
minimaxing each other in it.

The minimax payoffs have special role because they determine the reservation utility of the player. That
is, they determine the payoff that players can guarantee themselves in any equilibrium.

PROPOSITION4. Playeri ’s payoff is at leastvi in any static equilibrium and in any Nash equilibrium of
the repeated game regardless of the value of the discount factor. ✷

This observation implies that no equilibrium of the repeated game can give playeri a payoff lower than
his minimax value. We call any payoffs that Pareto-dominatethe minimax payoffsindividually rational .
In the example gameG, the minimax payoffs are.0; 0/, and so the set of individually rational payoffs
consists of feasible pairs.v1; v2/ such thatv1 > 0 andv2 > 0. The set is indicated by the red triangle.
The analogous payoffs in the gameG2, where the minimax payoffs are.2=5; 0/. The set is indicated by the
red polygon. More formally,

DEFINITION 4. The set offeasible strictly individually rational payoffs is the set
˚

v 2 V jvi > vi8i
	

:

We now state two very important results about infinitely repeated games. Both are called “folk theo-
rems” because the results were well-known to game theoristsbefore anyone actually formalized them, and
so no one can claim credit. The first folk theorem shows that any feasible strictly individually rational
payoff vector can be supported in a Nash equilibrium of the repeated game. The second folk theorem
demonstrates a weaker result that any feasible payoff vector that Pareto dominates any static equilibrium
payoffs of the stage game can be supported in a subgame perfect equilibrium of the repeated game.

THEOREM 2 (A FOLK THEOREM). For every feasible strictly individually rational payoffsv, there exists
ı < 1 such that for allı 2 .ı; 1/ there is a Nash equilibrium ofG.ı/ with payoffsv. ✷

Proof. Assume there is a pure strategy profilea such thatg.a/ D v.7 Consider the following strategy
for each playeri : “Play ai in period 0 and continue to playai as long as (i) the realized action profile in
the previous period wasa, or (ii) the realized action in the previous period differedfrom a in two or more
components. If in some previous period playeri was the only one not to follow profilea, then each player
j playsmi

j for the rest of the game.”
Can playeri gain by deviating from this profile? In the period in which he deviates, he receives at

most maxa gi .a/ and since his opponents will minimax him forever after, he will obtain vi in all periods
thereafter. Thus, if playeri deviates in periodt , he obtains at most

.1 � ıt /vi C ıt .1 � ı/ max
a

gi .a/ C ıtC1vi :

7This is unnecessary. The proof can be modified to work in caseswherev cannot be generated by pure strategies. It is messier
but the logic is the same.
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To make this deviation unprofitable, we must find the value ofı such that this payoff is strictly smaller
than the payoff from following the strategy, which isvi :

.1 � ıt /vi C ıt .1 � ı/ max
a

gi .a/ C ıtC1vi < vi

ıt .1 � ı/ max
a

gi .a/ C ıtC1vi < ıtvi

.1 � ı/ max
a

gi .a/ C ıvi < vi

For each playeri we define the critical levelıi by the solution to the equation

.1 � ıi / max
a

gi .a/ C ıivi D vi :

Becausevi < vi , the solution to this equation always exists withıi < 1. Takingı D maxi ıi completes
the argument. Note that when deciding whether to deviate, playeri assigns probability 0 to an opponent
deviating in the same period. This is what Nash equilibrium requires: Only unilateral deviations are
considered. �

The intuition of this theorem is that when the players are patient, any finite one-period gain from devi-
ation is outweighed by even a small loss in utility in every future period. The proof constructs strategies
that are unrelenting: A player who deviates will be minimaxed in every subsequent period.

Although this result is somewhat intuitive, the strategiesused to prove the Nash folk theorem are not
subgame perfect. The question now becomes whether the conclusion of the folk theorem applies to the
payoffs of SPE. The answer is yes, as shown by the various perfect folk theorem results. Here we show a
popular, albeit weaker, one due to Friedman (1971).

THEOREM 3 (FRIEDMAN , 1971). Let˛� be a static equilibrium with payoffse. Then for anyv 2 V with
vi > ei for all playersi , there is aı < 1 such that for allı > ı there is a subgame perfect equilibrium of
G.ı/ with payoffsv. ✷

Proof. Assume there is a strategy profileOa such thatg. Oa/ D v.8 Consider the following strategy profile:
“In period 0 each playeri plays Oai . Each playeri continues to playOai as long as the realized action profiles
were Oa in all previous periods. If at least one player did not play according toOa, then each player plays̨�

i

for the rest of the game.”
This strategy profile is a Nash equilibrium forı large enough that

.1 � ı/ max
a

gi .a/ C ıei < vi :

This inequality holds strictly atı D 1, which means it is satisfied for a range ofı < 1. The strategy profile
is subgame perfect because in every subgame off the equilibrium path the players play̨� forever, which
is a Nash equilibrium of the repeated game for any static equilibrium ˛�. �

Friedman’s theorem is weaker than the folk theorem except incases where the stage game has a static
equilibrium in which players obtain their minimax payoffs.This requirement is quite restrictive although
it does hold for the Prisoner’s Dilemma. However, there are perfect folk theorems that show that for any
feasible, individually rational payoff vector, there is a range of discount factors for which that payoff vector
can be obtained in a subgame perfect equilibrium.

8Again, if this is not the case, we have to use the public randomization technique that I mentioned above.

18



The folk theorems show that standard equilibrium refinements like subgame perfection do very little
to pin down play by patient players. Almost anything can happen in a repeated game provided that the
players are patient enough. It is troubling that game theoryprovides no mechanism for picking any of
these equilibria over others. Scholars usually focus on oneof the efficient equilibria, typically a symmetric
one. The argument is that people may coordinate on efficient equilibria and cooperation is more likely in
repeated games. Of course, this argument is simply a justification and is not part of game theory. There
are other refinements, e.g. renegotiation proofness, that reduces the set of perfect equilibrium outcomes.

4.2 Repeated Prisoner’s Dilemma

Let G.ı/ be the infinitely repeated game whose stage-game,g, is shown in Fig. 1 (p. 4), and where players
discount the future with the common factorı 2 .0; 1/.

4.2.1 Grim Trigger

Let us use a strategy from the class used in the proof of Theorem 3. In G.ı/, there is a unique reversion
Nash equilibrium in the stage game, and so there is only one such strategy: it is calledGrim Trigger , and
it prescribes punishing a deviation from the prescribed play by reverting to the unique Nash equilibrium
with mutual defection for the remainder of the game. Let us see what the maximum discounting can be
in order to support a SPE with perpetual cooperation. The strategysi prescribes cooperating in the initial
period and then cooperating as long as both players cooperated in all previous periods:

si .h
t / D

8

ˆ
<

ˆ
:

C if t D 0

C if a� D .C; C / for � D 0; 1; : : : ; t � 1

D otherwise

Consider nows� D .s1; s2/. From Therem 3, we know that cooperation can be sustained as long as
each player is willing to follow the equilibrium path ratherthan to trigger the punishment. Since the
best deviation is to unilateral defection, maxa gi .a/ D 13, and the Nash reversion is to mutual defection,
ei D 1, we conclude that the desired equilibrium path with mutual cooperation,vi D 10, can be sustained
by these strategies if

vi � .1 � ı/ max
a

gi .a/ C ıei , 10 � .1 � ı/.13/ C ı.1/ , ı � 1

4
� ı:

We conclude that the smallest discount factor that can sustain cooperation inG.ı/ is ı D 1=4. The
derivation makes it clear that harsher punishments (smaller values ofei ) allow cooperation to be supported
with a wider range of discount factors (smallerı).

Perhaps you are not convinced by this calculation? Let us first verify that s� is a Nash equilibrium of
the repeated game. If both players follow their equilibriumstrategies, the outcome will be cooperation in
each period:

.C; C /; .C; C /; .C; C /; : : : ; .C; C /; : : :

whose average discounted value is

.1 � ı/

1
X

tD0

ıtgi .C; C / D .1 � ı/

1
X

tD0

ıt .10/ D 10:

Consider the best possible deviation for player 1. For such adeviation to be profitable, it must produce a
sequence of action profiles which has defection by some players in some period. If player 2 followss2,
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she will not defect until player 1 defects, which implies that a profitable deviation must involve a defection
by player 1. LetT whereT 2 f0; 1; 2; : : :g be the first period in which player 1 defects. Since player 2
follows s2, she will playD from periodT C1 onward. Therefore, the best deviation for player 1 generates
the following sequence of action profiles:9

.C; C /; .C; C /; : : : ; .C; C /
„ ƒ‚ …

T times

; .D; C /
„ ƒ‚ …

periodT

; .D; D/; .D; D/; : : : ;

which generates the following sequence of payoffs for player 1:

10; 10; : : : ; 10
„ ƒ‚ …

T times

; 13; 1; 1; : : : :

The average discounted value of this sequence is:10

.1 � ı/
h

10 C ı.10/ C ı2.10/ C � � � C ıT �1.10/ C ıT .13/ C ıT C1.1/ C ıT C2.1/ C � � �
i

D .1 � ı/

2

4

T �1
X

tD0

ıt .10/ C ıT .13/ C
1

X

tDT C1

ıt .1/

3

5

D .1 � ı/

"

.1 � ıT /.10/

1 � ı
C ıT .13/ C ıT C1.1/

1 � ı

#

D 10 C 3ıT � 12ıT C1

Solving the following inequality forı yields the discount factor necessary to sustain cooperation:

10 C 3ıT � 12ıT C1 � 10 , ı � 1

4
:

Deviation is not profitable for anyı � 1=4, so s� is a Nash equilibrium. Note that this analysis only
considers deviations from the equilibrium path of play but does not check for deviations off the path; i.e.,
it does not check whethers� is SPE.

Let us now use OSDP to verify thats� is a SPE ofG.ı/. Recall that that a strategy profile is a SPE of
G.ı/ if, and only if, no player can gain by deviating once after anyhistory, and conform to their strategy
thereafter.

Consider first all histories of the typeht D ..C; C /; .C; C /; : : : ; .C; C //, that is, all histories without
any defection. For player 1, the average discounted payoff from all these histories is 10. Now suppose
player 1 deviates at some periodt and returns tos� from t C 1 onward (the one-shot deviation condition).
This yields the following sequence of action profiles:

.C; C /; .C; C /; : : : ; .C; C /
„ ƒ‚ …

t times

; .D; C /
„ ƒ‚ …

periodt

; .D; D/; .D; D/; : : : ;

9Note that the first profile is playedT times, from period 0 to periodT � 1 inclusive. That is, ifT D 3, the.C; C / profile is
played in periods 0, 1, and 2 (that is, 3 times). The sum of the payoffs will be

PT �1
tD0 ıt .10/ D

P2
tD0 ıt .10/. That is, notice that

the upper limit isT � 1.
10It might be useful to know that

T
X

tD0

ıt D
1
X

tD0

ıt �
1
X

tDT C1

ıt D 1

1 � ı
� ıT C1

1
X

tD0

ıt D 1 � ıT C1

1 � ı

wheneverı 2 .0; 1/.
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for which, as we saw before, the payoff is10 C 3ıt � 12ıtC1. This deviation is not profitable as long as
ı � 1=4. Therefore, if players are sufficiently patient, deviatingfrom s� by defecting at some period is not
profitable.

Consider now all histories other than..C; C /; .C; C /; : : : ; .C; C //, that is histories in which some
player has defected. (These are off the path of play, so not evaluated by Nash equilibrium.) We wish
to check if it is optimal to stick tos�. Suppose the first defection (by either player) occurred in period t .
The following sequence of action profiles illustrates the case of player 2 defecting:

.C; C /; .C; C /; : : : ; .C; C /
„ ƒ‚ …

t times

; .C; D/
„ ƒ‚ …

periodt

; .D; D/; .D; D/; : : : :

The average discounted sum is10 � 10ıt C ıtC1. (You should verify this!) Suppose now that player 1
deviates and playsC in some periodT > t . This generates the following sequence of action profiles:

.C; C /; .C; C /; : : : ; .C; C /
„ ƒ‚ …

t times

; .C; D/
„ ƒ‚ …

periodt

; .D; D/; : : : ; .D; D/
„ ƒ‚ …

T �t�1 times

; .C; D/
„ ƒ‚ …

periodT

; .D; D/; .D; D/; : : : :

Clearly, this must be worse than sticking with defection inT (mutual defection is, after all, an equilibrium
of the stage game), but let’s verify it anyway. The average discounted sum of this stream is10 � 10ıt C
ıtC1 � .1 � ı/ıT . (You should verify this as well.11) Since1 � ı > 0, this is strictly worse than sticking
with the equilibrium strategy, and so this one-shot deviation is not profitable irrespective of the discount
factor.

Because there are no other one-shot deviations to consider,player 1’s strategy is subgame perfect. Sim-
ilar calculations show that player 2’s strategy is also optimal, and sos� is a subgame perfect equilibrium
of G.ı/ as long ası � 1=4.

You might have noticed thatGrim Trigger punishes deviations irrespective of the identity of the player.
In a sense, it looks like a player is punishing their own past behavior. You might be tempted to consider a
strategy calledNaïve Grim Trigger , which prescribes cooperating while the other player cooperates and,
defecting forever after the other player has deviated:

si .h
t / D

8

<̂

:̂

C if t D 0

C if a�
j D C; j ¤ i; for � D 0; 1; : : : ; t � 1

D otherwise

To see whethers� D .s1; s2/ is a SPE ofG.ı/, we check whether it satisfies OSDP. Consider the history
h1 D .C; D/, that is, in the initial history, player 2 has defected. If player 2 now continues playings2, the
sequence of action profiles will result in:

.D; C /; .D; D/; .D; D/; : : : ;

for which the payoffs are0; 1; 1; : : :, whose discounted average value isı. If player 2 deviates and plays
D instead ofC in period 1, she will get a payoff of 1 in every period, whose discounted average value is

11To get this result, simplify the sum of payoffs

t�1
X

�D0

ı� .10/ C ıt .0/ C
T �1
X

�DtC1

ı� .1/ C ıT .0/ C
1
X

�DT C1

ı� .1/ D 10 �
t�1
X

�D0

ı� C
1

X

�DtC1

ı� � ıT ;

and normalize by multiplying by.1 � ı/, as before.
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1. Sinceı < 1, this deviation is profitable. Therefore,s� is not a subgame perfect equilibrium. You now
see why I called this strategy naïve.

The notion that one must punish one’s own deviation is misleading, however. To see this, suppose that
player 1 deviates but in the next period instead of “punishing himself” by defecting, he cooperates. Clearly
there cannot be an equilibrium, in which player 2 does not defect despite this—if this were the case, there
would be no punishment for player 1’s defection to begin with, so non-Nash play could not be sustained
in equilibrium. But if player 2 is going to defect no matter what, then there is no reason for player 1 to not
“punish himself” by defecting. If he cooperated instead, hewould be getting the worst possible payoff in
the stage game. Thus, him defecting following his own deviation is a best response to the expectation that
the other player will punish him for that defection, and is thus a way to avoid punishing himself with extra
costs.12

4.2.2 Tit-for-Tat

Consider now the strategysi calledTit-for-Tat . This strategy prescribes cooperation in the first period
and then playing whatever the other player did in the previous period: defect if the other player defected,
and cooperate if the other player cooperated:

si .h
t / D

8

ˆ
<

ˆ
:

C if t D 0

C if at�1
j D C; j ¤ i

D otherwise

This is the most forgiving retaliatory strategy: it punishes one defection with one defection and restores
cooperation immediately after the other player has resumedcooperating. It was made famous by the
simulations ran by Robert Axelrod that seemed to establish the strategy as being almost an evolutionary
necessity. It might come as a shock to learn that the strategyis not subgame perfect.

Consider the strategy profiles� D .s1; s2/. We cannot use Theorem 3 because the punishment is not a
Nash equilibrium in the stage game. We shall use OSDP instead. The game has four types of subgames,
depending on the realization of the stage game in the last period. To show subgame perfection, we must
make sure neither player has an incentive to deviate in any ofthese subgames.

1. The last realization was.C; C /.13 If player 1 followss1, then his payoff is

.1 � ı/Œ10 C 10ı C 10ı2 C 10ı3 C � � � � D 10:

If player 1 deviates, the sequence of outcomes is.D; C /; .C; D/; .D; C /; .C; D/; : : :, and his payoff
will be

.1 � ı/Œ13 C 0ı C 13ı2 C 0ı3 C 13ı4 C 0ı5 C � � � � D 13

1 C ı
:

12I will leave it as an exercise to see whether it is possible to sustain an equilibrium where the deviating player cooperates in
the following period despite being punished.

13This also handles the initial subgame.
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(Hint: To calculate this, partition the payoffs and try substituting x D ı2).14 Deviation will not be
profitable when10 � 13=.1 C ı/, or wheneverı � 3=10 � ı.

2. The last realization was.C; D/. If player 1 followss1, the resulting sequence of outcomes will be
.D; C /; .C; D/; .D; C /; : : :, to which the payoff (as we just found out above) is13=.1Cı/. If player
1 deviates and cooperates, the sequence will be.C; C /; .C; C /; .C; C /; : : :, to which the payoff is
10. So, deviating will not be profitable as long as13=.1 C ı/ � 10, which meansı � 3=10. We are
already in hot water here: Onlyı D 3=10 will satisfy both this condition and the one above.

3. The last realization was.D; C /. If player 1 followss1, the resulting sequence of outcomes will be
.C; D/; .D; C /; .C; D/; : : :, which the same as one period of.C; D/ followed by the discounted
alternating sequence we examined above. This means that thepayoff is.1 � ı/0 C ı.13=.1 C ı// D
13ı=.1 C ı/. If player 1 deviates, the sequence of outcomes will be.D; D/; .D; D/; .D; D/; : : :,
to which the payoff is 1. Deviation will not be profitable whenever13ı=.1 C ı/ � 1, which holds
for ı � 1=12. Since this is less than the minimum required above,ı remains the binding minimum
discount factor.

4. The last realization was.D; D/. If player 1 followss1, the resulting sequence of outcomes will be
.D; D/; .D; D/; .D; D/; : : :, to which the payoff is 1. If he deviates instead, the sequence will be
.C; D/; .D; C /; .C; D/; : : :, to which the payoff is13ı=.1 C ı/. Deviation will not be profitable if
1 � 13ı=.1 C ı/, which is true only forı � 1=12 < ı, which is not possible whenı � ı.

It turns out, then, thatTit-for-Tat is not subgame perfect because there exists no discount factor that can
rationalize both sustaining cooperation against the punishment of alternating unilateral defections, and
perpetual mutual defections against this punishment regime. The latter is not surprising: perpetual mutual
defection is the worst that can happen to the players in this game, and so even relatively small discount
factors can make other strategies preferable. Indeed, thisis how we can sustain any feasible individually
rational payoffs under Theorem 3. SinceTit-for-Tat would not restore cooperation after mutual defection,
it becomes too retaliatory. This is because the punishment regime is not severe enough, which also explains
the higher discount factor necessary to sustain cooperation in the first place. This suggests that some
modification of the punishment regime is in order.

14The payoff can be partitioned into two sequences, one in which the per-period payoff is 13, and another where the per-period
payoff is 0. So, lettingx D ı2 as suggested, we obtain:

13 C 0ı C 13ı2 C 0ı3 C 13ı4 C 0ı5 C 13ı6 C � � �
D 13 C 13ı2 C 13ı4 C 13ı6 C � � � C 0ı C 0ı3 C 0ı5 C � � �
D 13Œ1 C ı2 C ı4 C ı6 C � � � � C 0ıŒ1 C ı2 C ı4 C � � � �
D .13 C 0ı/Œ1 C ı2 C ı4 C ı6 C � � � �
D 13Œ1 C x C x2 C x3 C x4 C � � � �

D 13

�
1

1 � x

�

D 13

1 � ı2
D 13

.1 � ı/.1 C ı/

Which gives you the result above when you multiply it by.1 � ı/ to average it. I have not gone senile. The reason for keeping the
multiplication by 0 above is just to let you see clearly how you would calculate it if the payoff from.C; D/ was something else.
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4.2.3 Limited Retaliation

If Grim Trigger is entirely unforgiving and inTit-for-Tat the severity of the punishment depends on the
behavior of the other player, inLimited Retaliation (sometimes called “Forgiving Trigger”), the punish-
ment lasts for a specified finite number of periods irrespective of what the other player does. The strategy,
si , prescribes cooperation in the first period, and then1 < k < 1 periods of defection for every defection
of any player, followed by reverting to unconditional cooperation no matter what has occurred during the
punishment phase:

� Cooperative Phase:

A) cooperate and switch to Cooperative Phase B

B) cooperate unless some player has defected in the previousperiod, in which case switch to
Punishment Phase and set� D 0;

� Punishment Phase: if� � k, set� D � C 1 and defect, otherwise switch to Cooperative Phase A.

We shall use OSDP again. Suppose the game is in the cooperative phase (either no deviations have
occurred or all deviations have been punished). We have to check whether there exists a profitable one-
shot deviation in this phase. Suppose player 2 followss2. If player 1 followss1 as well, the outcome will
be.C; C / in every period, which yields an average discounted payoff of 10. If player 1 deviates toD once
and then follows the strategy, the following sequence of action profiles will result:

.D; C /; .D; D/; .D; D/; : : : ; .D; D/
„ ƒ‚ …

k times

; .C; C /; .C; C /; : : : ;

with the following average discounted payoff:

.1 � ı/
h

13 C ı C ı2 C � � � C ık C
1

X

tDkC1

ıt .10/
i

D 13 � 12ı C 9ıkC1

Therefore, there will be no profitable one-shot deviation inthe cooperation phase if, and only if,13 �
12ı C 9ıkC1 � 10, or if

4ı � 3ıkC1 � 1: (LR)

Let us first ask the usual question: given a punishment for some duration, what is the minimum discount
factor necessary to sustain cooperation?

If k D 1, condition (LR) is satisfied by anyı � 1=3. If k D 2, then (LR) is satisfied by anyı �
.
p

21 � 3/=6 � 0:264. If k D 3, then (LR) is satisfied by anyı ' 0:253. Generally, observe that the
left-hand side of (LR) isincreasingin k, and since the right-hand side is constant, the only way to restore
the equality at the lower bound is todecreaseı. In other words, as the number of punishment periods
increases, the minimum discount factor necessary to sustain cooperation must decrease (it will be easier to
do it). Moreover, since

lim
l!1

4ı � 3ıkC1 D 4ı;

it follows that the smallest discount factor converges to1=4 as the punishment becomes infinitely long.
This should not be surprising with this type of punishment, theLimited Retaliation strategy becomes the
Grim Trigger , and we already found thatı D 1=4 there. A shorter punishment requires that players care
more about the future (higher discount factors) so that the smaller costs it implies will be magnified by the
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shadow of the future. We have already seen that the shortest such punishment (one period only) requires
ı D 1=3, which is actually pretty good since it is not very demanding.

It might be more interesting to ask an alternative question:given a particular discount factor, how many
periods of punishment are necessary to sustain cooperation. For this, we need to solve (LR) fork. Using
k� to indicate the point where (LR) obtains with equality, we get:

k�.ı/ D
&

ln
�

4ı�1
3

�

ln.ı/
� 1

'

;

where we use the ceiling of the right-hand side becausek must be an integer. In other words, for any given
ı, anyk � k�.ı/ would support cooperation. This might be a more relevant question if one is interested
in institutional design where the players and their discount factor must be taken as given but where players
could setk as they see fit in order to facilitate cooperation.

Generally, the more patient players are, the shorter the punishment periods need to be. To see this, let’s
differentiatek� with respect toı, as follows:

dk�

dı
D

2

4
4 ln.ı/

4ı � 1
�

ln
�

4ı�1
3

�

ı

3

5 � ln.ı/�2:

Some algebra shows that

4 ln.ı/

4ı � 1
�

ln
�

4ı�1
3

�

ı
< 0 , ı 2 .1=4; 1/ ;

which, as we have seen above, is satisfied. This implies that

dk�

dı
< 0:

More patient players can design more lenient institutions.15 Less patient players, on the other hand, must
rely on longer punishments to offset temptations to defect.Of course, if infinite punishments cannot
support cooperation,ı < 1=4, then nothing will, and the unique would have to involve permanent mutual
defection. Mathematically, we observe that

lim
ı!1

k� D d1=3e D 1;

so with extremely patient players the threat of just a singleperiod of punishment would be sufficient to
prevent deviations. Alternatively, lettingı solve (LR), we obtain:

lim
k!1

ı D 1=4:

As we noted above, as the number of punishment periods goes toinfinity, theLimited Retaliation strategy
converges toGrim Trigger , and as a result the minimum discount factor necessary to sustain cooperation
converges to the one we found for it.

15Technically speaking, sincek is an integer, the increases will occur in a step-wise manner: after each jump to the next highest
integer,k� would remain that same ası increases until the increase causes the next jump.
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We now have to check if there is a profitable one-shot deviation in the punishment phase. Suppose there
arek0 < k periods left in the punishment phase. If player 1 followss1, the following action profile will be
realized:

.D; D/; .D; D/; : : : ; .D; D/
„ ƒ‚ …

k0 times

; .C; C /; .C; C /; : : : ;

while a one-shot deviation at the beginning produces

.C; D/; .D; D/; : : : ; .D; D/
„ ƒ‚ …

k0 times

; .C; C /; .C; C /; : : : :

Even without going through the calculations it is obvious that such deviation cannot be profitable. Thus,
following s1 is optimal in the punishment phase as well. We can now do similar calculations for player 2
to establish the optimality of his behavior although it is not necessary since she is also playing the same
strategy.

We conclude that for anyk � 1, Limited Retaliation can support a cooperative SPE provided players
are sufficiently patient.16 The fact that with very patient players even a single punishment period is suffi-
cient to sustain cooperation shows the extreme (and largelyunnecessary) punishment thatGrim Trigger
imposes. It also shows that unlikeTit-for-Tat , which retaliates only once as long as the other player per-
mits it by unilaterally cooperating,Limited Retaliation can sustain cooperation in SPE. The reason is that
unlike Tit-for-Tat that bogs down in an interminable alternation of unilateraldefection and cooperation,
Limited Retaliation imposes the fixed punishment, and then unilaterally restores cooperation without
reference to what has happened in the past.

4.3 Punishment with Lower-than-Nash Payoffs

In the repeated Prisoner’s Dilemma, the harshest punishment that can be imposed is perpetual defection,
which happens to be the unique Nash equilibrium of the stage game that coincidentally provides the mini-
max payoffs of the players. But what if the minimax payoffs are smaller than the lowest Nash payoffs? We
know, of course, from Theorem 2 that all feasible individually rational payoffs can be realized in a Nash
equilibrium. It turns out that there is an even stronger result that states that it is possible to implement
punishments very close to the minimax payoffs in SPE whenı is sufficiently high. The following result
(Theorem 1 in Fudenberg & Maskin 1986) establishes the claimfor 2-player games (which are the ones
we will study most). They provide a stronger result for multiplayer games too.17

THEOREM 4 (MINIMAX FOLK THEOREM FOR2-PLAYER GAMES). LetG.ı/ be a game with two play-
ers. For every feasible strictly individually rational payoffsvi , there existsı < 1 such that for allı 2 .ı; 1/

there is a SPE ofG.ı/ with payoffsvi . ✷

16Note that “sufficiently patient” means that we can find some discount factorı 2 .0; 1/ such that the claim is true. When
doing proofs like that, you should always explicitly solve for ı to show that it in fact exists.

17The proof for the 2-player game relies on the existence of a strategy profile where the players minimax each other. Such a
profile always exists in these games but might not exist in multi-player games, where the analogous requirement is that all players
minimax each other. This makes it possible to deviate profitably from the punishment phase (which cannot happen if one is being
minimaxed). The proof in that case relies on offering small rewards for participation in the punishment phase instead.
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Proof. Assume a public correlation device and observable mixtures.18 Let m be the strategy profile
where each player uses the strategy that minimaxes the otherplayer, and letmi be playeri ’s minimax
payoff.19 Consider the following strategy:

� Cooperative Phase: start by playing the action profile that producesvi , and continue to play it as
long as no deviation occurs. After any deviation, switch to the Punishment Phase.

� Punishment Phase. Playm for T periods, whereT is sufficiently large to make the deviation un-
profitable (sinceı < 1, thisT is finite), then start the Cooperative Phase. If there are anydeviations
during the Punishment Phase, restart it.

Before we establish that these strategies form a SPE, we needto derive the punishment periods. Denote the
highest attainable payoff in the stage game byvi D maxa gi .a/, and the payoff from the punishment phase
asvi D .1�ıT /gi .m/CıT vi , with vi > mi , and whereı is sufficiently high to ensure that the cooperative
payoff is strictly preferable to the best possible deviation followed by punishment:vi > .1� ı/vi C ıvi .
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These definitions ensure that the strategies are SPE. We already noted the condition that prevents devi-
ation from the Cooperative Phase. In the Punishment Phase, player i receives the average payoffvi . If he
deviates, he would obtain at mostmi in the first period (because the other player is minimaxing him), and
average at mostvi thereafter. Sincevi > mi such a deviation will not be profitable. �

As an example of a SPE that involves punishments that are not Nash, consider the game in Fig. 8 (p. 27).

L C R
U 10; 10 3; 15 0; 7

M 15; 3 7; 7 �4; 5

D 7; 0 5; �4 �15; �15

Figure 8: The Stage Game with Lower-than-Nash Punishments.

The unique Nash equilibrium of the stage game is.M; C /, with payoffs .7; 7/. We can support the
Pareto-superior outcome.U; L/ in SPE with aGrim Trigger threat of reverting to.M; C / after any de-
viation. Applying Theorem 3 withei D 7, vi D 10, andmi D maxa gi .a/ D 15, we find that the
requirement for such SPE is:

ı >
mi � vi

mi � ei
D 5

8
D 0:625:

Can we do better than that? For both players, the minimax payoff is mi D 0, and is attained by.U; R/ for
player 1 and.D; L/ for player 2. The action profile where the players choose their minimax strategies is
.D; R/, where their payoffs aregi .m/ D �15. The best attainable payoff isvi D 15. We shall consider
a very brief punishment period withT D 1. Following the equilibrium strategies of playing.U; L/ in the
cooperative phase yieldsvi D 10.

Suppose playeri deviates from the cooperative phase. The best deviation is to vi D 15, followed by
one period ofgi .m/, followed by return to the cooperative phase. The average Punishment Phase payoff

18Public correlation makes it possible to obtain any feasiblepayoffs. Observable mixtures make it possible to detect deviations
from the equilibrium strategy whenvi is not produced by some combination of pure strategies, as wehad assumed in Theorem 2.

19That is,mi is what player 1 gets when player 2 minimaxes him. Players will do strictly worse when they playm because
each is playing the strategy that minimaxes the other, whichdoes not give the best “defensive” payoff for themselves,mi .

20A pair ı andT that satisfy these conditions always exists. To see this, take ı close enough to 1 such thatvi > .1 � ı/vi

holds. WithT D 1, vi > mi as required (the punishment payoff is strictly better than the minimax payoff). If this is still too high
to satisfy the condition onvi , raiseT .

27



is thus

vi D .1 � ı/

"

gi .m/ C
1

X

tD0

ıtvi

#

D .1 � ı/gi .m/ C ıvi D .1 � ı/.�15/ C ı.10/ D 25ı � 15:

The average payoff from the deviation is

.1 � ı/vi C ıvi D .1 � ı/.15/ C ı.25ı � 15/ D 15 � 30ı C 25ı2:

To deriveı, we require thatvi D 10 > 15 � 30ı C 25ı2, which yields

ı > 1=5 � ı1:

Suppose the game is in the Punishment Phase. If players follow their equilibrium strategies, they will play
m once, followed by a return to the Cooperative Phase. As calculated above, playeri ’s average payoff from
this is vi D 25ı � 15. Since the players are using their minimax strategies, the best possible deviation
for playeri is to the minimax payoff,mi D 0, followed by restarting the punishment phase with average
payoff vi . Hence, the best deviation payoff is.1 � ı/.0/ C ıvi D ı.25ı � 15/. This deviation is not
profitable as long asvi > mi , which requires

ı > 3=5 � ı2:

Let ı D max.ı1; ı2/. By the OSDP, the strategies are subgame perfect for anyı > 3=5

Thus, even with the briefest punishmentT D 1, we were able to extend the range of discount factors that
sustain cooperation from5=8 down to3=5. It is not much, but then we used the mildest possible punishment.
IncreasingT would lower the minimum discount factor further.

5 Infinite-Horizon Bargaining

There are at least two basic ways one can approach the bargaining problem. (The bargaining problem
refers to how people would divide some finite benefit among themselves.) Nash initiated the axiomatic
approach with his Nash Bargaining Solution (he did not call it that, of course). This involves postulating
some desirable characteristics that the distribution mustmeet and then determining whether there is a
solution that meets these requirements. This is very prominent in economics but we shall not deal with it
here.

Instead, we shall look at strategic bargaining. Unlike the axiomatic solution, this approach involves
specifying the bargaining protocol (i.e. who gets to make offers, who gets to respond to offers, and when)
and then solving the resulting extensive form game.

People began analyzing simple two-stage games (e.g. ultimatum game where one player makes an offer
and the other gets to accept or reject it) to gain insight intothe dynamics of bargaining. Slowly they moved
to more complicated settings where one player makes all the offers while the other accepts or rejects, with
no limit to the number of offers that can be made. The most attractive protocol is the alternating-offers
protocol where players take turns making offers and responding to the other player’s last offer.

We have seen an application of the alternating-offers bargaining protocol in a finite-horizon game, where
we found that player 1 has a very strong first- and last-periodadvantage (when he gets to make the ulti-
matum demand before the game ends). The rather strong endgame effect looks particularly arbitrary in
situations where players do not have such a well-defined expectation about when bargaining must termi-
nate if no deal has been reached. The appropriate setting here is an infinite-horizon game.
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The infinite-horizon alternating-offers bargaining game was made famous by Ariel Rubinstein in 1982
when he published a paper showing that while this game has infinitely many Nash equilibria (with any
division supportable in equilibrium), it had a unique subgame perfect equilibrium! Now this is a great
result and since it is the foundation of most contemporary literature on strategic bargaining, we shall
explore it in some detail.21

5.1 The Basic Alternating-Offers Model

As before, two players,i 2 f1; 2g, bargain over a partition of a pie of size� > 0 according to the following
procedure. At timet D 0 player 1 makes an offer to player 2 about how to partition the pie. If player
2 accepts the offer, then an agreement is made and they dividethe pie accordingly, ending the game. If
player 2 rejects the offer, then she makes a counteroffer at time t D 1. If the counteroffer is accepted by
player 1, the players divide the pie accordingly and the gameends. If player 1 rejects the offer, then he
makes a counter-counteroffer at timet D 2. This process of alternating offers and counteroffers continues
until some player accepts an offer.

To make the above a little more precise, we describe the modelformally. The two players make offers
at discrete points in time indexed byt D .0; 1; 2; : : :/. At time t when t is even (i.e.,t D 0; 2; 4; : : :)
player 1 offersx 2 Œ0; �� wherex is the share of the pie 1 would keep and� � x is the share 2 would
keep in case of an agreement. If 2 accepts the offer, the division of the pie is.x; � � x/. If player 2
rejects the offer, then at timet C 1 she makes a counteroffery 2 Œ0; ��. If player 1 accepts the offer, the
division .� �y; y/ obtains. Generally, we shall specify a proposal as an ordered pair, with the first number
representing player 1’s share. Since this share uniquely determines player 2’s share (and vice versa) each
proposal can be uniquely characterized by the share the proposer offers to keep for himself.22

The payoffs are as follows. While players disagree, neitherreceives anything (which means that if they
perpetually disagree then each player’s payoff is zero). Ifsome player agrees on a partition.x; � � x/ at
some timet , player 1’s payoff isıtx and player 2’s payoff isıt .� � x/.

The players discount the future with a common discount factor ı 2 .0; 1/. The further in the future a
player gets some share, the less attractive this same share is compared to getting it sooner.

This completes the formal description of the game. You can draw the extensive form tree for several
periods, but since the game is not finite (there’s an infinite number of possible offers at each information
setand the longest terminal history is infinite—the one where players always reject offers), we cannot
draw the entire tree.

5.2 Nash Equilibria

Let’s find the Nash equilibria in pure strategies for this game. Just like we did with the simple repeated
games, instead of looking for the PSNE themselves, we shall try to find out what payoffs (here, divisions
of the benefit) can be supported in a PSNE. It turns out thatany divisioncan be supported in some Nash
equilibrium. To see this, consider the strategies where player 1 demandsx 2 .0; �/ in the first period, then
� in each subsequent period where he gets to make an offer, and always rejects all offers. This is a valid
strategy for the bargaining game. Given this strategy, player 2 does strictly better by acceptingx instead

21The Rubinstein bargaining model is extremely attractive because it can be easily modified, adapted, and extended to various
settings. There is significant cottage industry that does just that. The Muthoo (1999) book gives an excellent overview of the
most important developments. The discussion that follows is taken almost verbatim from Muthoo’s book. If you are serious about
studying bargaining, you should definitely get this book. Yours truly also tends to use variations of the Rubinstein model in his
own work on intrawar negotiations.

22In the finite-horizon game we formalized the offers as the shares each player offers to the other. Either way works, one just
has to be consistent. The present setup is the most common oneused in the literature.
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of rejecting forever, so she accepts the initial offer and rejects all subsequent offers. Given that 2 accepts
the offer, player 1’s strategy is optimal.

The problem, of course, is that Nash equilibrium requires strategies to be mutually best responses only
along the equilibrium path. It is just not reasonable to suppose that player 1 can credibly commit to
rejecting all offers regardless of what player 2 does. To seethis, suppose at some timet > 0, player 2
offersy < � to player 1. According to the Nash equilibrium strategy, player 1 would reject this (and all
subsequent offers) which yields a payoff of 0. But player 1 can do strictly better by accepting� � y > 0.
The Nash equilibrium is not subgame perfect because player 1cannot credibly threaten to reject all offers.

5.3 The Unique Subgame Perfect Equilibrium

Since this is an infinite horizon game, we cannot use backwardinduction to solve it. However, thinking
back to our finite-horizon alternating-offers bargaining game, we should recall that the SPE had two prop-
erties: (1) the offer made in each period was immediately accepted – this is a consequence of discounting,
which makes any delay unnecessarily costly, and (2) each offer was the discounted payoff of what the
other player expected to get in the next period. It is reasonable to start the analysis by assuming that these
properties might still characterize SPE behavior.

For example, suppose that in some SPE of this game players bargain without agreement until some time
T > 0 – that is, there exist equilibrium offers that are rejected with certainty. But then subgame perfection
in periodT � 1 requires that one expects an agreement to whatever offer is accepted inT . This effectively
creates a “last period” with agreement in the game, and so inT � 1, the proposer could just offer the
other player the discounted equivalent of what that player expects from agreement inT , and this would
be accepted. The proposer would be willing to do that and avoid the costly delay provided its payoff in
T is not too bad. There is noa priori reason to think that the payoff inT , which is, after all, acceptable
to both in SPE, should be very bad for one of the players. This would then suggest that the is a mutually
acceptable offer inT � 1, so there should be an agreement there instead. This logic would unravel the
game to the beginning suggesting that perhaps in SPE it should be the case that all offers being made in
equilibrium are also accepted. Thus, we shall start by looking for SPE with ano-delayproperty: whenever
a player has to make an offer, the equilibrium offer is immediately accepted by the other player.

If the SPE does have this property, then the game begins to look a lot like the finite horizon version: in
each period the players are only considering whether to accept the current offer or reject it in order to get
to the next period, where the offer made will be accepted. In the finite game, the offers with this property
differed across periods because it mattered how far the players were from the last period of the game: the
closer to the last period, the smaller the minimum that player 2 could credibly commit to rejecting, and so
the larger the share that player 1 could extract.23 But this game has no last period, so there is no reason
to assumea priori that no-delay offers that only have to compensate for a single-period delay should be
different across periods. Thus, we shall look for no-delay SPE with astationaryproperty: the equilibrium
offers that a player makes are the same in every period where that player makes an offer.

It is important to realize that at this point I do not claim that such equilibrium exists—we shall look for
one that has these properties. Also, I do not claim that if it does exist, it is the unique SPE of the game.
We shall prove this later. The intuition from the finite horizon model suggests that perhaps we should look
for SPE with these properties. Moreover, even if you had not seen the finite bargaining game, you could
still reason that since the subgames are structurally identical, there is noa priori reason to think that offers
must be non-stationary, and, if this is the case, that there should be any reason to delay agreement (because
doing so is costly). So it makes sense to look for an SPE with these properties.

23Because we assumed thatT was odd, which meant that player 1 could make the final take-it-or-leave-it offer and get the
entire�.
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Let x� denote player 1’s equilibrium offer andy� denote player 2’s equilibrium offer (again, because
of stationarity, there is only one such offer). Consider nowsome arbitrary timet at which player 1 has to
make an offer to player 2. From the two properties, it followsthat if 2 rejects the offer, she will then offer
y� in the next period (stationarity), which 1 will accept (no delay). So, 2’s payoff to rejecting 1’s offer is
ıy�. Subgame perfection requires that 2 reject any offer� � x < ıy� and accept any offer� � x > ıy�.
From the no delay property, this implies� � x� � ıy�. However, it cannot be the case that� � x� > ıy�

because player 1 could increase his payoff by offering somex such that� � x� > � � x > ıy�. Hence:

� � x� D ıy� (1)

Equation 1 states that in equilibrium, player 2 must be indifferent between accepting and rejecting player
1’s equilibrium offer. By a symmetric argument it follows that in equilibrium, player 1 must be indifferent
between accepting and rejecting player 2’s equilibrium offer:

� � y� D ıx� (2)

Equations (1) and (2) have a unique solution:

x� D y� D �

1 C ı

which means that there may be at most one SPE satisfying the nodelay and stationarity properties. The
following proposition specifies this SPE.

PROPOSITION5. The following pair of strategies is a subgame perfect equilibrium of the alternating-
offers game:

� player 1 always offersx� D �=.1 C ı/ and always accepts offersy � y�,

� player 2 always offersy� D �=.1 C ı/ and always accepts offersx � x�. ✷

Proof. We show that player 1’s strategy as specified in the proposition is optimal given player 2’s strat-
egy.

Let’s start with player 1’s proposal rule. Consider an arbitrary periodt where player 1 has to make an
offer. If he follows the equilibrium strategy, the payoff isx�. If he deviates and offersx < x�, player
2 would accept, leaving player 1 strictly worse off. Therefore, such deviation is not profitable. If he
instead deviates by offeringx > x�, then player 2 would reject. Since player 2 always rejects such offers
and never offers more thany�, the best that player 1 can hope for in this case is maxfı.� � y�/; ı2x�g.
That is, either he accepts player 2’s offer in the next periodor rejects it to obtain his own offer after that.
(Anything further down the road will be worse because of discounting.) However,ı2x� < x� and also
ı.� �y�/ D ıx� < x�, so such deviation is not profitable. Therefore, by the one-shot deviation principle,
player 1’s proposal rule is optimal given player 2’s strategy.

Consider now player player 1’s acceptance rule. At some arbitrary timet player 1 must decide how to
respond to an offer made by player 2. From the above argument we know that player 1’s optimal proposal
is to offerx�, which implies that it is optimal to accept an offery if and only if � � y � ıx�. Solving this
inequality yieldsy � � � ıx� and substituting forx� yieldsy � y�, just as the proposition claims.

This establishes the optimality of player 1’s strategy. By asymmetric argument, we can show the
optimality of player 2’s strategy. Given that these strategies are mutually best responses at any point in the
game, they constitute a subgame perfect equilibrium. �
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This is good but so far we have only proven that there is a unique SPE that satisfies the no delay and
stationarity properties. We have not shown that there are noother subgame perfect equilibria in this game.
Let’s do that now.

PROPOSITION6. The subgame perfect equilibrium described in Proposition 5is the unique subgame
perfect equilibrium of the alternating-offers game. ✷

Proof. This is a sketch of the elegant proof by Shaked and Sutton (1984), which replaces the quite
convoluted proof by Rubinstein (1982).

We begin by noting that any SPE must not admit any delay. If an agreement on some deal can be had
at timet > 0 with some strategies fromt on, then the same agreement can be had immediately using the
same strategies witht D 0 as the starting point. This follows from the fact that all games are structurally
identical, so the subgames all look the same. Since discounting makes delay costly, this further implies
that the SPE cannot involve any delay.

Suppose that there are multiple SPE that yield different payoffs to the players, and letvi by player
i ’s maximum payoff in some SPE andvi be playeri ’s worst payoff in some SPE. But since the game
is stationary—each even period is exactly the same as any oddperiod except with the identities of the
players making offers reversed—it follows that anything that can be obtained in SPE for one player must
be obtainable in SPE for the other. This implies thatv1 D v2 D v andv1 D v2 D v. That is, the best
SPE payoffs for the players must be the same, and their worst SPE payoffs must be the same as well, with
v � v.

Since distributing the benefit means that whatever one player gains the other player must give up, it
follows that in the SPE that supports playeri ’s best payoff,vi , rejection of that offer must involve the
other player,�i , getting her worst payoff,v�i . Similarly, in the SPE that supports playeri ’s worst payoff,
vi , rejection of that offer must involve the other player getting her best payoff,v�i . But since we have
established that the best and worst payoffs must be the same,and we know that the SPE involves no delay,
we can write:

v D � � ıv

v D � � ıv;

from which we immediately obtain:

v D v D �

1 C ı
:

That is, the best and worst SPE payoffs of the players are identical, which means that there can only be
one SPE of the game. �

We are now in game theory heaven! The rather complicated-looking bargaining game has a unique SPE
in which agreement is reached immediately. Player 1 offersx� at t D 0 and player 2 immediately accepts
this offer. The shares obtained by player 1 and player 2 in theunique equilibrium are

x� D �

1 C ı
and � � x� D ı�

1 C ı
;

respectively. Not surprisingly these are the limit of the shares in the finite-horizon game whenT ! 1.
In the unique SPE, the share depends on the discount factor and player 1’s share is strictly greater than

player 2’s share. Thus, while this game does not have the “endgame advantage” that accrues to whoever
happens to make an ultimatum demand whose rejection leads tono agreement, it still exhibits the “first-
mover” advantage because player 1 is able to extract all the surplus from what player 2 must forego if she
rejects the initial proposal.
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The Rubinstein bargaining model makes an important contribution to the study of negotiations. First,
the stylized representation captures characteristics of most real-life negotiations: (a) players attempt to
reach an agreement by making offers and counteroffers, and (b) bargaining imposes costs on both players.

Some people may argue that the infinite horizon assumption isimplausible because players have finite
lives. However, this involves a misunderstanding of what the infinite time horizon really represents. Rather
than modeling a reality where bargaining can continue forever, it models a reality where players do not
stop bargaining after some exogenously given predefined time limit. The finite horizon assumption would
have the two players to stop bargaining even though each would prefer to continue doing so if agreement
has not been reached. Unless there’s a good explanation of who or what prevents them from continuing to
bargain—e.g., a deadline—the infinite horizon assumption is appropriate. (There are other good reasons
to use the assumption and they have to do with the speed with which offers can be made. There are some
interesting models that explore the bargaining model in thecontext of deadlines for reaching an agreement.
All this is very neat stuff and you are strongly encouraged toread it.)

5.4 Bargaining with Fixed Costs

Osborne and Rubinstein also study an alternative specification of the alternating-offers bargaining game
where delay costs are modeled not as time preferences but as direct per-period costs. These models do
not behave nearly as nicely as the one we studied here, and they have not achieved widespread use in the
literature.

As before, there are two players who bargain using the alternating-offers protocol with time periods
indexed byt , .t D 0; 1; 2; : : :/. Instead of discounting future payoffs, they pay per-period costs of delay,
c2 > c1 > 0. That is, if agreement is reached at timet on .x; � � x/, then player1’s payoff isx � tc1 and
player 2’s payoff is� � x � tc2.

Let’s look for a stationary no-delay SPE as before. Considera periodt in which player 1 makes a
proposal. If player 2 rejects, then she can obtainy� � .t C 1/c2 by our assumptions. If he accepts, on
the other hand, she gets� � x � tc2 because of thet period delay. Hence, player 2 will accept any
� � x � tc2 � y� � .t C 1/c2, or � � x � y� � c2. To find now the maximum she can expect to demand,
note that by rejecting her offer int C 1, player 1 will getx� � .t C 2/c1 and by accepting it, he will get
� � y � .t C 1/c1 because of thet C 1 period delay up to his acceptance. Therefore, he will acceptany
� � y � .t C 1/c1 � x� � .t C 2/c1, which reduces to� � y � x� � c1. Since player 2 will be demanding
the most that player 1 will accept, it follows thaty� D � � x� C c1. This now means that player 2 cannot
credibly commit to reject anyt period offer that satisfies:

� � x � � � x� C c1 � c2 , x� � x � c1 � c2:

Observe now that sincec1 < c2, it follows that the RHS of the second inequality is negative. Suppose
now thatx� < � , then it is always possible to findx > x� such that0 > x� � x � c1 � c2. For instance,
takingx D x� � .c1 � c2/ D x� C .c2 � c1/ > x� becausec2 > c1. Therefore, ifx� < � , it is possible
to find x > x� such that player 1 will prefer to proposex instead ofx�, which contradicts the stationarity
assumption. Therefore,x� D � . This now pins downy� D c1. This yields the following result.

PROPOSITION7. The following pair of strategies constitutes the unique stationary no-delay subgame
perfect equilibrium in the alternating-offers bargaininggame with per-period costs of delayc2 > c1 > 0:

� player 1 always offersx� D � and always accepts offersy � c1;

� player 2 always offersy� D c1 and always accepts offersx � � .

The SPE outcome is that player 1 grabs the entire pie in the first period. ✷
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Obviously, if c1 > c2 > 0 instead, then player 1 will getc2 in the first period and the rest will go to
player 2. In other words, the player with the lower cost of delay extracts the entire bargaining surplus,
which in this case is heavily asymmetric. If the low-cost player gets to make the first offer, he will obtain
the entire pie. It turns out that this SPE is also the unique SPE (if c1 D c2, then there can be multiple SPE,
including some with delay).

This model is not well-behaved in the following sense. First, no matter how small the cost discrepancy
is, the player with the lower cost gets everything. That is, it could be that player 1’s cost isc1 D c2 � �,
where� > 0 is arbitrarily small. Still, in the unique SPE, he obtains the entire pie. The solution is totally
insensitive to the cardinal difference in the costs, only totheir ordinal ranking. Note now that if the costs
are very close to each other and we tweak them ever so slightlysuch thatc1 > c2, then player 2 will get
� �c2; i.e., the prediction is totally reversed! This is not something you want in your models. It is perhaps
for this reason that the fixed-cost bargaining model has not found wide acceptance as a workhorse model.

6 Legislative Bargaining

Consider now the multilateral legislative bargaining gamedeveloped by Baron and Ferejohn (1989). There
aren > 2 players (withn odd), who have to decide by simple majority how to distributea benefit of size
1. Players interact in discrete time periods indexed byt , with t D 0; 1; 2; : : : over an infinite horizon.
In each period, one of the players is randomly chosen to make aproposal, which takes the formx D
.x1; x2; : : : ; nn/, wherexi � 0 is the share the proposer offers playeri with the property that

P

i xi D 1.
If nC1

2
of the players agree to the proposal, it is adopted and the game ends. Otherwise, no agreement is

reached in the current period and the game advances to the next period, where a new proposer is chosen
randomly.

6.1 Closed-Rule

We shall first consider closed-rule bargaining, which allows for no amendments to the proposal; that is,
the offer merely receives an up or down vote.

Unlike the 2-player game, this one has multiple SPE. However, since all the players are identical, it
makes sense to look forsymmetricSPE—that is, equilibria where all players use the same strategy. Since
players are randomly selected to make offers, in expectation each subgame that starts a period looks exactly
the same as any other such game. This suggests that it makes sense to look forstationarySPE—that is,
equilibria where every time a player is chosen, he makes the same proposal. Finally, since delay is costly,
it also makes sense that if an agreement can be had, then thereshould beno delayin reaching it. Let us
find SPE with these three properties.

Since players are symmetric and the subgames are structurally identical, they must all receive the same
payoffs in the continuation game following rejection. Letv denote this, yet unknown, SPE payoff that
each player expects to get if a proposal is rejected. Any player would then agree to an offerxi � ıv.
Since the proposer wants to keep as much of the benefit for himself as possible, he will (a) select the
smallest winning coalition ofn�1

2
players (the proposer will vote for his own proposal), (b) offer only

ıv to members of this coalition (who will accept in equilibrium), and (c) offer nothing to the remaining
players. In SPE, the proposal will be immediately adopted and the game will end. The share that the
proposer gets to keep for himself is:

y D 1 � .n � 1/ıv

2
:

We now need to figure out the continuation value. To maintain symmetry, let the proposer randomly choose
the members of the winning coalition. This means that each ofthe remainingn � 1 players has1=2 chance
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of being selected to be in it.24 We can now calculate the expected value of rejecting an offer. In the next
period, any playeri has a1/n chance of being selected to be the proposer, in which case he will get y, and,
conditional onnot being the proposer, a1/2 chance of being in the winning coalition, in which case he will
get v, and a1/2 chance of being completely left out, in which case he will get0. Putting it all together
yields the expected payoff at the beginning of the next period:

v D
�

1

n

�

y C
�

1 � 1

n

� ��
1

2

�

.ıv/ C
�

1

2

�

.0/

�

D y

n
C .n � 1/ıv

2n
:

Using the value ofy we found above, this now yields:

v D 1

n
:

In other words, in the symmetric SPE, where all players must have the same expectations, the continuation
value for each player is just his expected share of the benefitwhen all shares are the same. This, in turn,
allows us to calculate the share of the benefit that the proposer gets to keep for himself:

y.n/ D 1 � ı.n � 1/

2n
:

Consistent with the results from the Rubinstein bargainingmodel, there is a “first-mover” advantage here
as well: the proposer’s share exceeds the expected shares ofthe members of the winning coalition. This
advantagedecreasesas players become more patient. In the limit,

lim
ı!1

y.n/ D
�

n C 1

2

� �
1

n

�

;

that is, his share is whatever remains after distributing the expected shares,1/n, to half of the players. Not
surprisingly, as players become more patient, the proposermust offer a better deal to induce the members
of the winning coalition to not reject the offer in order for the chance of becoming proposers themselves.

What happens as the number of players,n, goes up? As one might expect, each player’s equilibrium
expected share,1/n, decreases. Does this mean that the proposer gets to extractmore? No, it does not
because there is a stronger countervailing effect: with more players, the proposer has to form a larger
minimum winning coalition. To see this, note that

dy

dn
D � ı

2n2
< 0:

In other words, even though the proposer does pay less to eachmember of the winning coalition, the fact
that he has to pay more players diminishes his share. In the limit,

lim
n!1

y.n/ D 2 � ı

2
;

which is clearly bounded away from 0 (even with infinitely patient players the proposer will extract1/2 of
the benefit). This in itself is intriguing because asn ! 1, the individual expected shares,1/n, collapse
to 0. Thus, while in absolute terms the proposer’s share doesdecrease as the number of players increases,
in relative terms his position is almost infinitely better. In fact, this does not just obtain in the limit. If

24However many minimal winning coalitions can be formed, and there aren�1C n�1
2

of them, since each such coalition

includes half of the remaining players, each such player must be in exactly half of these coalitions. In other words, eachplayer
has a1/2 chance of being selected as a member of some coalition.
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we conceptualize therelative poweras the ratio of the shares of the proposer to that of a member ofthe
winning coalition,y W 1=n D yn, we obtain:

dyn

dn
D 1 � ı

2
> 0:

Thus, relative power increases in the number of players because there are just so many more ways to form
winning coalitions.

We conclude that under closed-rule bargaining, the proposer has tremendous advantages even relative
to whoever ends up in the winning coalition that forms to passthe proposal. Half of the legislature is left
in the cold with absolutely zero shares of the benefit. As the size of the legislature increases, the relative
power of the proposer increases as well even though he has to dole out ever larger shares of the benefit to
the members of the coalition that he forms—these individualmembers get ever smaller personal shares.

6.2 Open-Rule

One objection to the stark results we obtained under closed-rule bargaining is that individual players are
forced to accept minimal shares of the benefit because rejection of the proposal is costly: they have to wait
until the next period for the chance of becoming a proposer, which also entails a risk of ending up outside
of the winning coalition should some else get selected to make the offer. But what if they did not have
to wait but were instead allowed to offer amendments to the proposal? This, of course, is how the U.S.
Congress works. Perhaps this would force the proposer to offer something more equitable, at least to the
members of the winning coalition?

To introduce amendments in the model, let’s modify its structure as follows. The game starts with a
randomly selected proposer who, as before, offersx D .x1; x2; : : : ; nn/ to the other players. This becomes
thecurrent proposal, and the first period begins. The periods are all identical: one of the remainingn � 1

is randomly selected to propose an amendment to the current proposal. The amender can either second the
current proposal, in which case it is submitted to an up or down majority vote, or propose an amendment
x0 D .x0

1; x0
2; : : : ; x0

n/, in which case it is pitted againstx in a majority vote. The offer that wins becomes
the current proposal, and the game advances to the next period, where a new amender is randomly chosen
from then � 1 players that excludes the player who was the amender in the previous period. The game
continues in this way until some current proposal is seconded by an amender and adopted by a majority.

A few clarifications are in order. First, note that any playerexcept the last amender (or, in the first
period, except the initial proposer) can be selected to propose a new amendment irrespective of whether
that player is a member of the coalition that is receiving positive shares. This means that when players
consider winning coalitions, they have to account for the fact that if they leave players out in the cold,
there is a positive probability that one of them will be selected to be an amender in the same period. Such
a player would not second the existing proposal (since that would give him nothing) but would instead
propose an amendment for a vote. Second, the amendment is notassumed to be somehow related to the
current proposal—anything can be offered—although, as we shall see, in practice it will depend almost
entirely on it (after all, the amendment must prevail against the current proposal, which means it would
have to satisfy all but one members—the previous amender—ofthat coalition).

This game is quite a bit more complex than the closed-rule variant. As before, we shall look forsym-
metric stationarySPE. It should be immediately clear that the initial proposer can no longer safely exclude
players from the winning coalition: doing so entails a risk that one of the excluded player would be se-
lected to propose an amendment. This suggests we could look for one of two types of SPE: an equilibrium
where the proposal is guaranteed acceptance, and one where there is a positive risk of it being rejected.

GUARANTEED ACCEPTANCE. The only way to guarantee that a proposal is adopted is to ensure that
whoever is selected as an amender would second it (expectingthat a majority would pass it). This means
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that all players must be in the winning coalition (receivingpositive shares of the benefit). Since we are
looking for symmetric SPE, each of the remaining players must expect the same continuation payoff if the
proposal is not seconded:v. This implies that the proposer must offer each of these playersıv, so he must
keep for himself

y D 1 � .n � 1/ıv:

Since we are looking for SPE without delay, if this share is accepted in equilibrium, then it cannot exceed
the continuation payoff of any of the other players. The reason is that if it did, any player who is selected
as amender would not second the current proposal but would instead propose an amendment that gives
him that payoff. Thus, it must be thatv D y. From this, we can conclude that the initial offer will allocate

y.n/ D 1

1 C ı.n � 1/

to the proposer andıy to all remaining players. Whoever gets selected as amender will second the pro-
posal, and it will be unanimously adopted.

How does this compare to the closed-rule proposal? There is still a first-mover advantage that is decreas-
ing in the discount factor: the proposer getsy while everyone else getsıy. There are, however, important
differences when it comes to the magnitude of that advantageand the size of the winning coalition. Unlike
the closed-rule setting, which allows the proposer to construct a minimal winning coalition that excludes
half of the players while still ensuring acceptance, open-rule forces a much more equitable distribution of
the benefit as no player can be excluded when acceptance must be guaranteed. This forces the proposer
to allocate a much smaller share for himself. To see this, subtract the open-rule share from the closed rule
share to obtain:

1 � ı.n � 1/

2n
� 1

1 C ı.n � 1/
> 0 , .2 � ı/n > 1 � ı;

where the second inequality obtains becausen > 1 and2 � ı > 1 � ı. The inability to play the members
of a minimal winning coalition against the others forces theproposer to construct a coalition of all players,
which entails smaller shares both for players who would havebeen in the minimal winning coalition under
closed-rule, and for the proposer himself. In fact, as players become arbitrarily patient, the proposer retains
no power whatsoever under open-rule:

lim
ı!1

y.n/ D 1

n
I

that is, each player is going to get the exact same share of thebenefit in the proposal that gets seconded
and adopted by a unanimous vote. Recall that with closed-rule, only half of the players will get1/n each in
that case, with the proposer keeping the rest to himself.

POSSIBLE REJECTION. So now we have two extreme outcomes: the proposer is either exceedingly
powerful (closed-rule) or basicallyprimus inter pares(open-rule with guaranteed acceptance). What about
some intermediate solution, in which he engages in a risk-return trade-off, trading some risk of having his
proposal rejected with a successful amendment for some gains if it happens to pass? In this scenario, the
proposer would construct a winning coalition from a subset of the remaining players and only distribute
the benefit among them (and himself). If any member of that coalition is selected to be the amender, he will
second the proposal and it will pass since the coalition willhave the majority. If, however, a non-member
is selected, then he would propose an amendment. For that amendment to make sense in equilibrium, it
would have to beat the current proposal, which means it will have to satisfy a majority of players. Since
the winning coalition under the current proposal has a majority, at least some of its members would have
to be induced to vote for the amendment. To continue with the notion of symmetry, let us look for an
SPE in whichall members of that coalition except the proposer are induced tosupport the amendment.
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One simple way to accomplish this is to keep the original proposer’s share (and giving him nothing) while
offering the exact same distribution as the current proposal to the remaining members of the coalition.
Since they are indifferent, they can vote for the amendment,and of course the amender will vote for it as
well, and so it will pass.

The logic is straightforward, but the solution is a bit tricky since the continuation values are harder to
derive. There are, in fact, three continuation values now, depending on whether the player is a proposer,
v.y/, or a member of the winning coalition, or whether he is currently excluded from the winning coalition,
v.0/. Since we are using a simple coalition building strategy that only replaces the last proposer with the
current amender, letk � .n C 1/=2 be the size of the winning coalition (it must command a majority).

The current proposal will be seconded and adopted if a memberof this coalition happens to be selected
as amender, for which the probability is.k�1/=.n�1/. If, on the other hand, a non-member is selected, he
will offer an amendment that will beat the current proposal and the game will move on to the next period,
where the previous proposer is among the excluded players. Thus, the continuation value of a proposer
who wants sharey for himself is:

v.y/ D
�

k � 1

n � 1

�

y C
�

n � k

n � 1

�

ıv.0/: (3)

The continuation value of a currently excluded player depends on whether he is selected to be an amender,
for which the probability is1=n�1. In this case, he will propose a successful amendment that will make
him the current proposer, so he will obtainıv.y/. If he is not selected, his payoff is 0 either because the
current proposal gets seconded and adopted (if a member of the coalition is selected to be the amender)
or because there is a successful amendment but he is still excluded from the resulting coalition (under
the simple replacement coalition-building strategy any other excluded player will just keep the existing
coalition and include himself in it while tossing out the current proposer). Thus, the continuation value for
an excluded player is simply:

v.0/ D ıv.y/

n � 1
: (4)

Consider now a member of the winning coalition. Since the proposer allocates1�y to thek �1 members,
by symmetry each of them will obtain.1 � y/=.k � 1/. In order to be induced to second the proposal and
vote for it, this must be at least as good as a member’s continuation value. (In equilibrium, of course, they
will be indifferent.) But since each member who gets selected as an amender can immediately propose an
amendment that would give him the share of the current proposer (although he would have to wait until
the next period), it must be the case that his expected continuation value isıv.y/. Thus, we conclude that
in this SPE,

1 � y

k � 1
D ıv.y/: (5)

Equations (3), (4), and (5) produce a system of equations with three unknowns,y, v.y/, andv.0/. The
solution is:

y D .n � 1/2 � ı2.n � k/

�.n; k/
and v.y/ D .k � 1/.n � 1/

�.n; k/
and v.0/ D ı.k � 1/

�.n; k/
;

where
�.n; k/ D .n � 1/2 C ı.n � 1/.k � 1/2 � ı2.n � k/ > 0:

This characterizes an SPE for any winning coalition of sizek, but we can do a bit better and ask what
the optimal size of that coalition should be. To find this, we can findk that maximizes the proposer’s
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continuation value,v.y/. Ignoring for the moment thatk must constitute a majority and that it must be an
integer, we calculatedv.y/

dk
D 0 to obtain the first-order condition:

.k � 1/2 D n � 1 � ı2

ı
;

so the solution is:

k� D 1 C

s

n � 1 � ı2

ı
:

We must now ensure that the coalition includes at least a simple majority:

k� � n C 1

2
;

which is satisfied for anyı 2 .0; ı/, where

ı D
p

.n � 1/4 C 64.n � 1/ � .n � 1/2

8
< 1:

In other words, with sufficiently patient players,ı > ı, the optimal coalition size will not constitute a
majority. Since the proposer’s payoff is decreasing as the coalition gets further from the optimal size, he
will select the closest coalition size that satisfies the constraint—the simple majority. In other words, with
sufficiently patient players, the optimal winning coalition is the simple majority. Usingk D .n C 1/=2,
yields the equilibrium payoff for the proposer:

v.y/ D 2.n � 1/

4.n � 1/ C ı.1 C n.n � 2// � 2ı2
:

Unlike the two scenarios we considered previously, where the proposer’s payoff is just his offer,y, (which
is immediately accepted), here we must take into account thelikelihood of rejection (with a simple-
majority coalition it is 1/2), and so we usev.y/ for the comparisons. The proposer will be willing to
take the risk with a simple-majority coalition over constructing a proposal with unanimous support if, and
only if,

2.n � 1/

4.n � 1/ C ı.1 C n.n � 2// � 2ı2
>

1

1 C ı.n � 1/
;

or if

ı >

p

.n � 1/.15 C n.3 C n.n � 3/// � n.n � 2/ � 1

4
� ı0 2 .0; 1/:

Thus, ifı > max
�

ı; ı0�, then the risk-return trade-off is worth it to the proposer.Otherwise, he will make
sure the proposal attracts unanimous support. Moreover, since

dı

dn
< 0 and

dı0

dn
< 0

for n � 3, it follows that as the number of players increases, the minimum discount factor necessary to
rationalize the risk-return trade-off decreases. With sufficiently many players the discount factor bounds
become irrelevant:

lim
n!1

ı D lim
n!1

ı0 D 0;

which means that the risk-return trade-off isalwayspreferable to a coalition of all players.
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The intuition behind these results is relatively straightforward. As players become more patient, buying
the support of all potential amenders in order to ensure the passage of the proposal gets exceedingly costly.
The proposer is better off switching to a risky strategy thatbuys the support only of a bare majority. If the
bet succeeds, the proposer ends up with a much larger share, but if it fails, he obtains much less.

Substantively, we should expect open-rule legislative bargaining to involve either proposals that pass
with very large majorities (in our case, unanimity), or proposals that cater to a small winning coalition (in
our case, a simple majority) but that run the risk of failing,causing amendments with costly delays. Notice
that in the risk-return SPE, the game can continue indefinitely since in each period there’s a 50-50 chance
of the current proposal being amended, resulting in no agreement and a loss of surplus due to discounting.

40



A Appendix: Strictly Competitive Games

This is a special class of games that is not studied any more asmuch as it used to be. Nevertheless, it is
important to know about them because they involveminimaxsolutions (these were, in fact, derived before
Nash equilibrium), and because the idea of minimaxing playssuch an important role in Folk Theorems.

A strictly competitive game is a two-player game where players have strictly opposed rankings over the
outcomes. A good example is MATCHING PENNIES. That is, when comparing various strategy profiles,
whenever one player’s payoff increases, the other player’spayoff decreases. Thus, there is no room for
coordination or compromise. More formally,

DEFINITION 5. A two-player strictly competitive game is a two-player game with the property that, for
every two strategy profiles,s; s0 2 S ,

u1.s/ > u1.s0/ , u2.s/ < u2.s0/:

A special case of strictly competitive games are the zero-sum games where the sum of the two players’
payoffs is zero (e.g. MATCHING PENNIES).

Player 1

Player 2
L R

U 3; 2 0; 4

D 6; 1 1; 3

Figure 9: A Strictly Competitive Game.

Consider the (non-zero-sum) strictly competitive game in Fig. 9 (p. 41). What is the worst-case scenario
that player 1 could ever face? This is the case where player 2 choosesR, which yields a smaller payoff to
player 1 whether he choosesU or D (he gets0 < 3 if he choosesU and1 < 6 if he choosesD).

More generally, theworstpayoff that playeri can get when he plays the (possibly mixed) strategy�i is
defined by

wi .�i / � min
sj 2Sj

ui .si ; sj /:

This means that we look at all strategies available to playerj to find the one that gives playeri the smallest
possible payoff if he plays�i . In other words, if playeri chooses�i , he is guaranteed to receive a payoff
of at leastwi .�i /. This is the smallest payoff that player 2 can hold player 1 togiven player 1’s strategy.
A minimax strategy gives playeri the best of the worst. That is, it solves max�i 2†i

wi .�i /:

DEFINITION 6. A strategyO�i 2 †i for player i is called aminimax (security) strategy if it solves the
expression

max
�i 2†i

min
sj 2Sj

ui .�i ; sj /;

which also represents playeri ’s minimax (security) payoff.

Returning to our example in Fig. 9 (p. 41), player 1’s minimaxstrategy isD because given that player
2 is minimizing player 1’s payoff by playingR, player 1 can maximize it by choosingD (because1 > 0).
Similarly, player 1 can hold player 2 to at most 3 by playingD, to which player 2’s best response isR.

This example is easy to understand, but it might be misleading in several ways. First, the players use
pure strategies in minmaxing. Second, both players are minimaxed in the same strategy profile,hD; Ri.
Third, the minimax profile is a Nash equilibrium.
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Consider the issue of players using pure strategies to minimax the opponent. Computing the minimax
payoffs in the game from Fig. 9 (p. 41) is easy because each player has a pure strategy that yields the other
player lower payoffs no matter what the other player does. This will not be true in general, and it might
be necessary for players to mix in order to impose the lowest possible payoff on the opponent. If we look
at MATCHING PENNIES, for instance, we note thatw1.H/ D �1 whens2 D T , andw1.T / D �1 when
s2 D H . On the other handw1.1=2/ D 0, so player 1’s minimax strategy is to mix between his two actions
with equal probability. A symmetric argument establishes the same result for the other player.

As it so happens, the minimax strategies in bothhD; Ri in the game from Fig. 9 (p. 41) andh1=2; 1=2i
in MATCHING PENNIES are Nash equilibria. You might wonder whether this will always be the case.
There is no general relationship between minimax strategies and equilibrium strategies except for strictly
competitive games, for which the two yield the same solutions:

PROPOSITION8. If a strictly competitive game has a Nash equilibrium,.��
1 ; ��

2 /, then��
1 is a minimax

(security) strategy for player 1 and��
2 is a security strategy for player 2. ✷

In general, the minimax strategies have no relationship to Nash equilibria, and the strategy profiles that
minimax one player are not the strategy profiles that minimaxanother. To illustrate both claims, consider
the game in Fig. 10 (p. 42).

Player 1

Player 2
L R

U 1; 1 0; 2

D 0; 0 3; 5

Figure 10: A Game for Minimax Illustration.

This game has a unique Nash equilibrium:hD; Ri. Since player 2 has a strictly dominant strategy,R,
player 1 only hold her to the worst of the outcomes that this strategy yields. Therefore, the strategy profile
that minimaxes player 2 ishU; Ri, where her payoff is 2, and it is not a Nash equilibrium. Minimaxing
player 1 is more involved. If player 2 choosesL with sufficiently high probability, player 1 would choose
U for sure but his payoff from that is decreasing in the probability with which she picksR. Since his payoff
from D is increasing in that probability, the worst payoff that shecan hold him to is where he is indifferent
between the two, which happens when she playsL with probability 3/4. Thus, there is a continuum of
strategy profiles that minimax player 1:h�1; 3=4ŒL�i, here�1 2 Œ0; 1� is any strategy for player 1. In all of
these, player 1’s expected payoff is3/4. None of them are Nash equilibria. This sort of scenario is much
more common when we consider arbitrary games.

Since most stage games that we study are not strictly competitive, the minimax strategies generally
involve non-Nash play in the stage game, which is why we have to go through all the trouble to ensure that
these sorts of punishments (with players minimaxing deviations) are credible. This is done by generally
requiring any player who fails to minimax a deviating one to become the immediate target of punishment
with the rest coordinating on minimaxing him for his failureto punish the original deviator.
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